The attack requires physical access to the secure element (few local electromagnetic side-channel acquisitions, i.e. few minutes, are enough) in order to extract the ECDSA secret key. In the case of the FIDO protocol, this allows to create a clone of the FIDO device.
新版的 firmware 解掉了這個問題:
The new YubiKey firmware 5.7 update (May 6th, 2024) switches the YubiKeys from Infineon cryptographic library to Yubico new cryptographic library. To our knowledge, this new cryptographic library is not impacted by our work.
Mac computers that contain the T1 chip or the Apple T2 Security Chip
而從 Apple Silicon 這邊可以看到 Apple T1 chip 是 2016 年後的機種引入的:
The Apple T1 chip is an ARMv7 SoC (derived from the processor in S2 SiP) from Apple driving the System Management Controller (SMC) and Touch ID sensor of the 2016 and 2017 MacBook Pro with Touch Bar.
If you are a developer or service that would like to support strong hardware authentication on iOS, we invite you to work with us by applying to participate in the YubiKey for Lightning Program. Selected participants will have access to the private preview of YubiKey for Lightning and also the Yubico Mobile iOS SDK for Lightning.
If you're using Linux and you configure udev to grant access to the vendor ID & product ID of the token as it appears normally, nothing will work because the vendor ID and product ID are different when it's active. The Chrome extension will get very confused about this.
ASN.1 DER is designed to be a “distinguished” encoding, i.e. there should be a unique serialisation for a given value and all other representations are invalid. As such, numbers are supposed to be encoded minimally, with no leading zeros (unless necessary to make a number positive). Feitian doesn't get that right with this security key: numbers that start with 9 leading zero bits have an invalid zero byte at the beginning. Presumably, numbers starting with 17 zero bits have two invalid zero bytes at the beginning and so on, but I wasn't able to press the button enough times to get such an example. Thus something like one in 256 signatures produced by this security key are invalid.
With this device, I can't test things like key handle mutability and whether the appID is being checked because of some odd behaviour. The response to the first Check is invalid, according to the spec: it returns status 0x9000 (“NO_ERROR”), when it should be 0x6985 or 0x6a80. After that, it starts rejecting all key handles (even valid ones) with 0x6a80 until it's unplugged and reinserted.
This device has the same non-minimal signature encoding issue as the Feitian ePass. Also, if you click too fast, this security key gets upset and rejects a few requests with status 0x6ffe.
A 1KiB ping message crashes this device (i.e. it stops responding to USB messages and needs to be unplugged and reinserted). Testing a corrupted key handle also crashes it and thus I wasn't able to run many tests.
The Key-ID (and HyperFIDO devices, which have the same firmware, I think) have the same non-minimal encoding issue as the Feitian ePass, but also have a second ASN.1 flaw. In ASN.1 DER, if the most-significant bit of a number is set, that number is negative. If it's not supposed to be negative, then a zero pad byte is needed. I think what happened here is that, when testing the most-significant bit, the security key checks whether the first byte is > 0x80, but it should be checking whether it's >= 0x80. The upshot is the sometimes it produces signatures that contain negative numbers and are thus invalid.