AMD 平台上的 LLM 計算

前幾天在 Hacker News 上看到的文章:「Making AMD GPUs competitive for LLM inference (mlc.ai)」,原文在「Making AMD GPUs competitive for LLM inference」這邊。

Nvidia 在 GPU 上的各種運算這塊進來的很早,除了本家開發了很多工具以外,社群的支援度也很好。而 AMD 這邊就差了不少,但這也反應在顯卡的售價上面。

作者整理了同樣是 24GB VRAM 的顯卡出來,分別是 AMD 的 7900XTX,以及 Nvidia 的 3090 Ti 與新的 4090

可以看出來縮然同樣 fp16 對應到的功耗差蠻多的,但單價低很多,對於業餘玩家偶而用來說,其實是個可以考慮的方案。

而他們的成果可以看出來效果其實不差,跑 Llama 2 的 model 可以看到 CP 值相當高:

看起來支援的主力在 ROCm 上,就效能與功耗的筆直來說其實是超越的?(或者保守一點的說,是在同一個水平上的)

現在算是 AMD 顯卡在追趕的過程,社群的力量看起來會是主力...

跑在本機的 GitHub Copilot 替代品

Hacker News 上看到「FauxPilot – an attempt to build a locally hosted version of GitHub Copilot (github.com/moyix)」這個本機上跑 GitHub Copilot 協定的專案。專案的 GitHub 在「FauxPilot - an open-source GitHub Copilot server」這邊。

裡面用的是 Salesforce 放出來的 CodeGen,不過 Salesforce 提供了 350M、2B、6B 與 16B 的 model,但在 FauxPilot 這邊目前只看到 350M、6B 與 16B 的 model 可以用,少了 2B 這組,然後需要的 VRAM 就有點尷尬了:

[1] codegen-350M-mono (2GB total VRAM required; Python-only)
[2] codegen-350M-multi (2GB total VRAM required; multi-language)
[3] codegen-6B-mono (13GB total VRAM required; Python-only)
[4] codegen-6B-multi (13GB total VRAM required; multi-language)
[5] codegen-16B-mono (32GB total VRAM required; Python-only)
[6] codegen-16B-multi (32GB total VRAM required; multi-language)

13GB 剛好超過 3080 Ti 的 12GB,所以不是 3090 或 3090 Ti 的使用者就只能跑 350M 這個版本?看 Hacker News 上的討論似乎是有打算要弄 2B 的版本啦...

然後我自己雖然是 11GB 的 1080 Ti,想跑個 350M 的版本測試看看,但看起來相關的 Nvidia driver 沒裝好造成他識別不到,加上我是用 neovim,看了一下目前 ~/.config/github-copilot/hosts.json 的內容,程式碼應該是寫死到 GitHub API 上使用:

{"github.com":{"user":"gslin","oauth_token":"x"}}

先暫時放著好了,晚點等 2B 版本出現後再回來看看有沒有比較完整的指示...