Amazon EC2 的網路效能

前一篇「在 AWS 上面的 OpenVPN Server 效能」最後的問題就是 EC2 instance 本身的網路效能,畢竟是公司要用的,還是實際測一下數字,之後有人接手的時候也比較清楚是怎麼選這個大小的...

這邊拿的是 AWSap-southeast-1 (Singapore) 的 EC2 測試,直接在同一個 subnet 裡面開兩台一樣的機器跑 iperf 測試。

機器開機後會先跑這串指令 (除了安裝 iperf 的指令,其他的是出自我自己 wiki 上的 Ubuntu 這頁),然後再重開機:

sudo fallocate -l 512M /swapfile; sudo chmod 600 /swapfile; sudo mkswap /swapfile; sudo swapon /swapfile; echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab; echo -e "net.core.default_qdisc=fq\nnet.ipv4.tcp_congestion_control=bbr" | sudo tee /etc/sysctl.d/99-tcp.conf; sudo sysctl -p /etc/sysctl.d/99-tcp.conf; sudo apt update; sudo apt dist-upgrade -y; sudo apt install -y apache2-utils apt-transport-https build-essential curl dnsutils dstat git jq locales moreutils most mtr-tiny net-tools p7zip-full pigz prometheus-node-exporter rsync sharutils software-properties-common sysstat unrar unzip vim-nox wget zsh zsh-syntax-highlighting zstd; sudo apt install -y iperf; sudo apt clean

接下來就是一台跑 iperf -s,另外一台跑 iperf -c 10.x.x.x -i 1 -t 3600 讓他跑一個小時看結果了。

我都有跑 tmux 再連到這些機器上,這樣可以捲回去看每一秒的傳輸速度,就可以看出來變化了,不過這邊還是簡單的只列出最高速度 (burstable) 與穩定輸出的速度 (baseline):

EC2 instance Baseline Burstable vCPU RAM Pricing (USD$)
c6g.medium 500Mbps 10Gbps 1 2GB 0.0392
c6g.large 750Mbps 5Gbps (claimed 10Gbps) 2 4GB 0.0784
c6g.xlarge 1.25Gbps 10Gbps 4 8GB 0.1568
t4g.small 125Mbps 5Gbps 2 2GB 0.0212
t4g.medium 255Mbps 5Gbps 2 4GB 0.0424
t4g.large 510Mbps 5Gbps 2 8GB 0.0848
t4g.xlarge 1Gbps 5Gbps 4 16GB 0.1696

這邊沒列出來的是 burstable 可以持續的時間,但這跟你機器吃的網路資源有關,我就決定只用 baseline 來做決策了,這樣可能會多花一點錢,但會少很多麻煩。

另外這次在處理的過程有被同事提醒各種 bandwidth overhead,所以就順便查了一下資料:

  • OpenVPN 本身的 overhead 大約是 5% (跑 UDP 的時候):「OpenVPN performance」。
  • SSH 也有些 overhead,大約是 6% (把來回的封包都算進去):「What is the overhead of SSH compared to telnet?」。
  • rsync 的部份鐵定也有 overhead,但這邊就沒找到現成的文章有統計過了。
  • 另外我自己之前做實驗發現 TCP BBR 的 retransmission algorithm 還蠻激進的,會有 10% packet loss,改用預設的 CUBIC 會好很多,大約 1% 到 2% 左右。

綜合這些測試,我自己抓了 35% 的 overhead 來推估,最後是用 c6g.large 來養 VPN server。750Mbps 的實際流量大約可以包進 550Mbps 的原始流量,大約是 68MB/sec。

不過新加坡與印尼之間的 internet bandwidth 好像還是不太夠,有時候深夜跑也跑不滿... 不過之後 VPN 上的 client 會愈來愈多,應該是不需要降...

英國的 ISP 開始記錄使用者的連線資訊

從「Two UK Broadband ISPs Trial New Internet Snooping System」這邊看到英國的 ISP 開始記錄使用者的連線資訊,簡化後的 log 樣子像是這樣:

Two unnamed broadband or mobile ISPs are reportedly helping the UK Home Office and the National Crime Agency (NCA) to trial a new internet snooping system on their customers, which is being conducted as part of the controversial 2016 UK Investigatory Powers Act (aka – snoopers charter).

加上「T-Mobile US 打算要賣使用者的瀏覽記錄了」這篇,繼續推廣 DNS over HTTPDNS over TLS,以及 ECH (Encrypted Client Hello)。

Chromium (Google Chrome) 修正 DNS 查詢問題後對 Root name servers 的壓力減輕不少

先前在「Chromium (Google Chrome) 實做對 Root DNS 的影響」這邊有提過 Chromium (以及 Google Chrome) 判斷所在的網路是不是有 NXDOMAIN hijack 的程式碼反而對 Root name servers 產生了巨大的 NXDOMAIN 流量。

因為上新聞所以才動了起來 (本來都沒什麼在動),後來提供的方法是變成可以設定的選項,但預設是關閉的,這樣一來就可以改善 Root name servers 的壓力:「Add multi-state DNS interception policy - functionality piece.」。

而後在 Google Chrome 87 版進入 stable channel 後開始大幅緩解 (各平台分別在 2020/11/17 與 2020/11/18 釋出),在繼續觀察幾個月後,上個禮拜 Verisign 的人在 APNIC 這邊更新了消息:「How Chromium reduced Root DNS traffic」。

這是去年八月時丟出來的資料,可以看到趨勢往上:

這是後續的資料,從 87 版釋出後開始往下:

另外我覺得比較好玩的是這個,在「Issue 1090985: Disable Intranet Redirect Detector by default」這邊看到這樣的說明:

看起來沒什麼問題,先 merge 再說... 是這樣玩嗎 XDDD

OpenBGPD 接 AWS Direct Connect 時只讓單區路由的方法

算是繼上篇「用 pfSense 接 AWS Direct Connect (Public VIF) 的方式」的改善,上篇的方法設定完後預設會是全部都會 routing 進來。也就是說,如果你接到新加坡區,美東 routing 也會進來。

這可能是你要的,但也可能不是你要的,所以找了一下方法,在 AWS 的文件裡面有提到可以透過 BGP community 控制這些 routing:「Routing policies and BGP communities」。

第一個方向是從 pfSense 送出去的封包,這個要過濾從 BGP 送進來的 routing table:

AWS Direct Connect applies the following BGP communities to its advertised routes[.]

把:

allow from 1.2.3.4

改成:

allow from 1.2.3.4 community 7224:8100

另外一個是讓 AWS 不要把我們的 network 送到其他區,這是在 network 上加上 BGP community tag:

You can apply BGP community tags on the public prefixes that you advertise to Amazon to indicate how far to propagate your prefixes in the Amazon network, for the local AWS Region only, all Regions within a continent, or all public Regions.

把本來的:

network 1.2.3.4/30

變成:

network 1.2.3.4/30 set community 7224:9100

先這樣搞,用 mtr 看了一下應該沒錯...

Fastly 觀察到因 COVID-19 產生的流量上升資料

因為 COVID-19 的關係,可以預期網路的流量一定會大幅提昇,但實際上是多少總是需要一些數據才能想像...

剛剛看到 Fastly 放出了他們觀察到因為 COVID-19 而產生的流量變化:「How COVID-19 is affecting internet performance」。

從 2020 年二月與三月相比,可以看到許多區域的流量都有大幅成長,尤其是重災區的義大利與英國,不過這邊沒有給與 2019 三月的比較 (YoY):

另外是這些流量成長的種類,可以看到 streaming、數位媒體與教育類的流量大幅成長:

在網路速度的部份,可以看到大多數的地區是下降的,但加州沒什麼影響,而日本反而是上升的,應該可以解讀為這兩個地區平常就有夠多的容量,所以真的有爆量而用到的時候反而不會是瓶頸?

接下來幾個月應該會更嚴峻...

Google Cloud Platform 在台灣的機房可以開 Standard Network 的機器了

Google Cloud Platform 一開始是提供 Premium Network,會透過 Google 自家的網路骨幹連到最近的點,然後再透過當地的機房交換出去,這樣可以確保頻寬的穩定性,但成本當然也就比較高...

後來提供了 Standard Network 則是從機房出去後就直接交換,成本會比較低 (參考「Network Service Tiers - Custom Cloud Network」這篇),但在台灣的機房一直都沒有提供 Standard Network (好像是需要另外申請?),所以我每個月月底的時候都會測一下看看開放了沒... 然後剛剛發現可以開起來了,不確定是已經全開了還是分批開。

測了一下發現網路相當... 爛?是還在調整嗎...

像是 1.1.1.1 的 latency 很高 (自家的 8.8.8.8 當然就沒這個問題):

PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=49 time=48.9 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=49 time=48.5 ms
64 bytes from 1.1.1.1: icmp_seq=3 ttl=49 time=48.5 ms

--- 1.1.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 48.554/48.691/48.964/0.193 ms

然後 168.95.1.1139.175.1.1 也都很差 (61.31.1.1 不給 ping):

PING 168.95.1.1 (168.95.1.1) 56(84) bytes of data.
64 bytes from 168.95.1.1: icmp_seq=1 ttl=239 time=21.2 ms
64 bytes from 168.95.1.1: icmp_seq=2 ttl=239 time=21.3 ms
64 bytes from 168.95.1.1: icmp_seq=3 ttl=239 time=21.4 ms

--- 168.95.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 21.276/21.367/21.454/0.072 ms
PING 139.175.1.1 (139.175.1.1) 56(84) bytes of data.
64 bytes from 139.175.1.1: icmp_seq=1 ttl=53 time=63.4 ms
64 bytes from 139.175.1.1: icmp_seq=2 ttl=53 time=62.9 ms
64 bytes from 139.175.1.1: icmp_seq=3 ttl=53 time=62.9 ms

--- 139.175.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 62.967/63.139/63.455/0.303 ms

不過學術網路倒是還不錯:

PING 140.112.2.2 (140.112.2.2) 56(84) bytes of data.
64 bytes from 140.112.2.2: icmp_seq=1 ttl=51 time=5.13 ms
64 bytes from 140.112.2.2: icmp_seq=2 ttl=51 time=4.40 ms
64 bytes from 140.112.2.2: icmp_seq=3 ttl=51 time=4.52 ms

--- 140.112.2.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 4.405/4.690/5.138/0.325 ms
PING 140.113.250.135 (140.113.250.135) 56(84) bytes of data.
64 bytes from 140.113.250.135: icmp_seq=1 ttl=55 time=5.87 ms
64 bytes from 140.113.250.135: icmp_seq=2 ttl=55 time=5.97 ms
64 bytes from 140.113.250.135: icmp_seq=3 ttl=55 time=6.11 ms

--- 140.113.250.135 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 5.872/5.987/6.119/0.135 ms
PING 140.117.11.1 (140.117.11.1) 56(84) bytes of data.
64 bytes from 140.117.11.1: icmp_seq=1 ttl=242 time=9.52 ms
64 bytes from 140.117.11.1: icmp_seq=2 ttl=242 time=9.17 ms
64 bytes from 140.117.11.1: icmp_seq=3 ttl=242 time=9.20 ms

--- 140.117.11.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 9.172/9.298/9.521/0.176 ms

有需要的人可以測試看看了...

在 AWS 上用 pfSense 串接的細節

這邊講的是在 AWS 上想要串接不同帳號的流量 (也就是 site-to-site VPN),不使用 AWS 自己提供的串接服務,而是用 pfSense 串接。

會自己搞主要有幾個考慮:

  • 考慮到 AWS Transit Gateway 的費用,每掛一個上去就要多收一次錢,另外上面處理的流量要再收費。
  • 應用的流量不大,所以用個 t2.nano 跑也有個 100Mbps 左右的 capacity,算是夠用了。
  • 而且應用在寫的時候也考慮到斷線後的處理,加上用戶端的網路本來就不怎麼穩定,AWS Transit Gateway 的 SLA 再怎麼高,我也還是得處理斷線時的後續機制,不如就不要那麼緊張...

在設定的時候要注意的事情:

  • EC2 的 Source IP/Destination IP 檢查要關掉,這算是基本盤。
  • VPC 內的 Routing 要確認過一輪。
  • EC2 上的 Security Group 對於 pfSense 的主機得全開,因為 pfSense 會丟出不屬於他自己 IP address 的封包,也會接收不屬於自己 IP address 的封包 (透過上面提到的 routing),這些都還是會經過 Security Group 的檢查,而 Security Group 能設定的數量有限,基本上應該會全開...
  • pfSense 在設完 IPsec 後,同樣在 pfSense 上面的 firewall 需要手動加開,因為預設是關的。

其實這套作法就是在 AWS 還沒推出 Transit Gateway 前的作法,只是老方法還是很好用...

AWS 提供 VPC Traffic Mirroring 的功能

以前在機房可以在 switch 上用 port mirror 看流量內容找問題,現在在 AWS 上也提供類似的功能 VPC Traffic Mirroring:「New – VPC Traffic Mirroring – Capture & Inspect Network Traffic」。

所以所有以前在傳統機房使用 switch 的技術,都可以在 AWS 上重新發展出來,所以不算太意外的是第一波就有一堆 partner 提供服務,或是一些公司提供經驗。

另外 AWS 的 VPC Traffic Mirroring 比以前 switch 的 port mirror 更彈性,可以把整個網路當來源,或是指定特定的 ENI 當來源:

Mirror Source – An AWS network resource that exists within a particular VPC, and that can be used as the source of traffic. VPC Traffic Mirroring supports the use of Elastic Network Interfaces (ENIs) as mirror sources.

然後除了可以打到 ENI 上,也可以打到 NLB 上:

Mirror Target – An ENI or Network Load Balancer that serves as a destination for the mirrored traffic. The target can be in the same AWS account as the Mirror Source, or in a different account for implementation of the central-VPC model that I mentioned above.

不免俗的,可以過濾封包:

Mirror Filter – A specification of the inbound or outbound (with respect to the source) traffic that is to be captured (accepted) or skipped (rejected). The filter can specify a protocol, ranges for the source and destination ports, and CIDR blocks for the source and destination. Rules are numbered, and processed in order within the scope of a particular Mirror Session.

然後有判斷 session 的能力 (看這邊的敘述,應該就是指 stateful connection?):

Traffic Mirror Session – A connection between a mirror source and target that makes use of a filter. Sessions are numbered, evaluated in order, and the first match (accept or reject) is used to determine the fate of the packet. A given packet is sent to at most one target.

而且這一次公佈就幾乎開放所有區域了,費用看起來也不太貴:

VPC Traffic Mirroring is available now and you can start using it today in all commercial AWS Regions except Asia Pacific (Sydney), China (Beijing), and China (Ningxia). Support for those regions will be added soon. You pay an hourly fee (starting at $0.015 per hour) for each mirror source; see the VPC Pricing page for more info.

Tumblr 對 Yahoo! 流量的影響

也是在 Twitter 上看到的,Yahoo! (Oath) 決定對 Tumblr 上的 NSFW 類圖片下手後對流量的影響:

這張圖應該是出自「Traffic Analysis for port 36:"(36) Yahoo (AS 10310)"」這邊的資料,可以看到頗明顯的下降... 不過九月那個掉下來的部份又是什麼啊 :o

Sandvine 對全球網路流量的分析,那兩個是怎麼上榜的...

看到「Netflix Dominates Internet Traffic Worldwide, BitTorrent Ranks Fifth」這篇報導了 Sandvine 對全球網路流量的分析,主要是這張:

大多數的應用都不算意外 (只是差在各地區的使用習慣),但 AMERICAS 的第十名 (XBOX LIVE UPDATE) 跟 EMEA 的第七名 (PLAYSTATION DOWNLOAD) 是怎麼一回事 XDDD