TCP Congestion Control Algorithm 的選擇

先前 Ubuntu 桌機用 BBR 跑了一陣子,但有遇到一些問題 (可以參考「Dropbox 測試 BBRv2 的結果」這篇),所以暫時換成 Westwood,但還是陸陸續續會看一下各種研究。

剛剛在「[tor-relays] TCP CCA for Tor Relays (and especially Bridges)」這邊看到一個經驗談:

Here are my completely unscientific scribbles of how all the various algorithms behaved. The scenario is uploading for a minute or so, observing the speed in MB/sec visually, then recording how it appeared to change during that minute (and then repeating this a couple of times to be certain).

tcp_bic.ko       -- 6...5...4
tcp_highspeed.ko -- 2
tcp_htcp.ko      -- 1.5...3...2
tcp_hybla.ko     -- 3...2...1
tcp_illinois.ko  -- 6...7...10
tcp_lp.ko        -- 2...1
tcp_scalable.ko  -- 5...4...3
tcp_vegas.ko     -- 2.5
tcp_veno.ko      -- 2.5
tcp_westwood.ko  -- <1
tcp_yeah.ko      -- 2...5...6

上面是「目視法」觀察到的速度 (MB/sec),看了一下維基百科上 TCP-Illinois 的說明,看起來設計的目的是提供給頻寬大、latency 高的情境下:

It is especially targeted at high-speed, long-distance networks.

來跑跑看好了...

Dropbox 測試 BBRv2 的結果

BBRv1 有不少問題,在 BBRv2 有一些改善 (目前還在測試階段,在「TCP BBR v2 Alpha/Preview Release」這邊可以看到一些說明),而 Dropbox 則是跳下去測試,並且公佈結果:「Evaluating BBRv2 on the Dropbox Edge Network」。


Spoiler alert: BBRv2 is slower than BBRv1 but that’s a good thing.

在文章開頭的這張圖就說明了 BBRv2 的速度比較慢,但是說明這是朝好的方向改善。

BBRv1 的問題其實我自己都有遇到:我自己的 Ubuntu 桌機跑 BBRv1,在我上傳大量資料的時候 (只開一條連線),會導致 PPPoE 的 health check 失敗,於是就斷線了,另外 VM 裡面的 Windows 7 因為也是 bridge mode 跑 PPPoE,也可以看到斷線嘗試重連的訊息,於是只好改掉...

上面提到的問題就是 BBRv1 造成 packet loss 過高,除了我遇到的問題外,這對於其他 loss-based 的 TCP congestion algorithm 來說會有很大的傷害 (i.e. 不公平):

Other tradeoffs were quite conceptual: BBRv1’s unfairness towards loss-based congestion controls (e.g. CUBIC, Compound), RTT-unfairness between BBRv1 flows, and (almost) total disregard for the packet loss:

另外一個改善是 BBRv2 加入了 ECN 機制,可以更清楚知道塞住的情況。

整體上來說應該會好不少,不知道之後正式釋出後會不會直接換掉 Linux Kernel 裡的 BBRv1,或是不換,讓 BBRv1 與 BBRv2 共存?

CloudFront 的 BBR 效能提昇

這是在找一些 TCP congestion algorithm 相關的資訊時發現的,看起來 Amazon CloudFront 導入 BBR 一陣子了:「TCP BBR Congestion Control with Amazon CloudFront」。

不過 BBR 被研究的愈來愈多,大家開始發現這個演算法的霸道,跟其他的 TCP congestion algorithm 並不太能和平共存,但這就跟軍事武器一樣,隔壁升級了你就得跟著升級,抱怨沒有用,只會被消滅...

AWS System Manager 支援 SSH 的 -L 功能 (Port Forwarding)

AWS System Manager 宣佈支援了 SSH Port Forwarding 的功能 (也就是 OpenSSH 指令裡的 -L):「New – Port Forwarding Using AWS System Manager Sessions Manager」。

以往是連到那台主機上後,再透過 -R 反過來再穿一層,但這必須在那台機器有 Internet 存取權限的情況下才有辦法做... 這次的方法是 AWS System Manager 直接提供了,所以只需要可以連到主機就可以做。

用 Machine Learning 改善 Streaming 品質的服務與論文

Hacker News 上看到「Puffer」這個服務,裡面利用了 machine learning algorithm 動態調整 bitrate,以提昇傳輸品質。

測試得到的數據後來被整理起來一起放進論文:「Continual learning improves Internet video streaming」。

在開頭介紹了 Fugu 這個演算法:

We describe Fugu, a continual learning algorithm for bitrate selection in streaming video.

而 Puffer 就是實驗網站:

We evaluate Fugu with Puffer, a public website we built that streams live TV using Fugu and existing algorithms. Over a nine-day period in January 2019, Puffer streamed 8,131 hours of video to 3,719 unique users.

這個站台提供了許多真實的頻道進行測試:

Stream live TV in your browser. There's no charge. You can watch U.S. TV stations affiliated with the NBC, CBS, ABC, PBS, FOX, and Univision networks.

可以看到 Fugu 的結果很好,比起其他提出的方案是全面性的改善:

這邊是用 WebSocket 測試,並且配合了不同的 TCP congestion algorithm,沒有太考慮額外的計算成本...

Netflix 找到的 TCP 實做安全性問題...

這幾天的 Linux 主機都有收到 kernel 的更新,起因於 Netflix 發現並與社群一起修正了一系列 LinuxFreeBSD 上 TCP 實做 MSSSACK 的安全性問題:「https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001.md」。

其中最嚴重的應該是 CVE-2019-11477 這組,可以導致 Linux kernel panic,影響範圍從 2.6.29 開始的所有 kernel 版本。能夠升級的主機可以直接修正,無法升級的主機可以參考提出來的兩個 workaround:

Workaround #1: Block connections with a low MSS using one of the supplied filters. (The values in the filters are examples. You can apply a higher or lower limit, as appropriate for your environment.) Note that these filters may break legitimate connections which rely on a low MSS. Also, note that this mitigation is only effective if TCP probing is disabled (that is, the net.ipv4.tcp_mtu_probing sysctl is set to 0, which appears to be the default value for that sysctl).

Workaround #2: Disable SACK processing (/proc/sys/net/ipv4/tcp_sack set to 0).

第一個 workaround 是擋掉 MSS 過小的封包,但不保證就不會 kernel panic (文章裡面用語是 mitigation)。

第二個 workaround 是直接關掉 SACK,這組 workaround 在有 packet loss 的情況下效能會掉的比較明顯,但看起來可以避免直接 kernel panic...

HTTP/3 (QUIC) 的反面看法

這篇整理了 HTTP/3 (QUIC) 的反面看法,算是常見的疑慮都列出來了:「QUIC and HTTP/3 : Too big to fail?!」。

其實大多都是使用 UDP 而導致的問題:

  • 因為 UDP 導致 firewall 可能沒開,以及可能會需要等 timeout 走回 TCP 的問題。
  • 因為 UDP 變成很多事情在 userland 處理,而導致的 CPU 使用率比使用 TCP 的 TLS 1.2/1.3 高很多。
  • 因為 UDP 導致 amplification attack 的安全性問題,以及對應的 workaround 產生的頻寬議題。
  • 由於 UDP 會需要自己控制擁塞,等於是在 UDP 上面又重做了一次 TCP congestion algorithm,而且因為重作所以得考慮與 TCP 搶資源的公平性。

整篇文章算是整理了一般對 HTTP/3 的疑慮,之後如果有進展的話,可以再拿出來當 checklist 再確認有哪些有改善...

AWS 推出 Global Accelerator,用 AWS 的網路加速

AWS 推出了 Global Accelerator,利用 AWS 的網路加速:「New – AWS Global Accelerator for Availability and Performance」。

這個產品有點像是 GCP 的 Premium Network 的概念,從名稱叫做 Data Transfer-Premium (DT-Premium) 也可以看出來這點。另外 Cloudflare 也有類似的產品,叫做 Spectrum

使用者的連線會先進入最接近使用者的 AWS Edge,然後走 AWS 自己的網路到真正服務所在的 AWS 區域:

AWS 自家的 CloudFront 可以做類似的事情,但是 CloudFront 是 DNS-based service,而且只吃 HTTP 類的連線;這次推出的 Global Accelerator 則是 Anycast-based service,同時支援 TCP 與 UDP。

目前的 edge 只有北美、歐洲與亞洲:

AWS Global Accelerator is available in US East (N. Virginia), US East (Ohio), US West (Oregon), US West (N. California), Europe (Ireland), Europe (Frankfurt), Asia Pacific (Tokyo) and Asia Pacific (Singapore).

這類服務通常也都可以擋下一些 DDoS 攻擊,畢竟是拿大水管在擋...

解 ocserv 因為沒有使用 DTLS 而導致速度很慢的問題...

最近偏好用 ocserv 來跑 VPN。在連上 full-route VPN 後測試發現速度偏慢,發現是沒有走 UDP 的 DTLS,只有 TCP 的 TLS 流量... 找了一下發現用有人遇過了,可以用 workaround 解:「OpenConnect not working with DTLS」。

作者發現是 ocserv.socket 有問題,打算整個抽開。方法是註解掉 /lib/systemd/system/ocserv.service 裡的 Requires=ocserv.socketAlso=ocserv.socket,然後在 systemd 裡一起處理:

sudo systemctl stop ocserv
sudo systemctl disable ocserv.service
sudo systemctl disable ocserv.socket
sudo systemctl daemon-reload
sudo systemctl start ocserv
sudo systemctl enable ocserv

重新連上去後跑 tcpdump 可以看到是 UDP 了,測速也可以看出來快不少...

又一個 TCP BBR 的測試結果

TCP BBRGoogle 發表的 TCP congestion control 演算法,是一個純伺服器端就能夠改善 TCP 壅塞處理的機制。在 Linux Kernel 4.9 之後被納入了。

Spotify 有大量資料要傳到使用者端 (像是音檔),剛好是 TCP BBR 改善的對象之一,實際測試後得到了很不錯的改善數據:「Smoother Streaming with BBR」。

Spotify 公佈的資料沒有提到平台,所以先稍微了解一下他的音質,也就是「Audio settings」這篇。

在 Desktop 是 160kbps/320kbps Ogg (Standard/HQ)。在 Web Player 則是 128kbps/256kbps AAC (Standard/HQ)。

行動平台部份比較複雜,在 iOS 上是 96kbps/160kbps/256kbps Ogg (Normal/High/Extreme),另外有 Automatic 自動調整的設定。在 Android 平台則是 24kbps HE-AACv2 (Low) 與 96kbps/160kbps/320kbps Ogg (Normal/High/Very high) 以及 Automatic。

而最後 Chromecast 則是 128kbps/256kbps (Standard/Premium)。

測試時可以發現 shutter (指跟不上播放速度) 的情況降低了 6%~10%,而且下載速度增加了 5%~7% (對於慢速的裝置改善更多,10%~15%):

Taking daily averages, stutter decreased 6-10% for the BBR group. Bandwidth increased by 10-15% for the slower download cohorts, and by 5-7% for the median. There was no difference in latency between groups.

而各地區的差異也可以看出來改善很多:

另外他們在測試時,剛好遇到秘魯的機房連外發生問題,結果意外發現 BBR 還是可以穩定在這種網路環境下運作:

In Peru, the non-BBR group saw a 400-500% increase in stutter. In the BBR group, stutter only increased 30-50%.

In this scenario, the BBR group had 4x bandwidth for slower downloads (the 10th percentile), 2x higher median bandwidth, and 5x less stutter!

Ubuntu 18.04 上可以直接設定 BBR,在 Ubuntu 16.04 則可以參考「Ubuntu 16.04 用 speedtest-cli 測試 TCP BBR 效能」這篇的方式升級 kernel 後設定 BBR。