Built on our new EBS Block Express architecture that takes advantage of some advanced communication protocols implemented as part of the AWS Nitro System, the volumes will give you up to 256K IOPS & 4000 MBps of throughput and a maximum volume size of 64 TiB, all with sub-millisecond, low-variance I/O latency. Throughput scales proportionally at 0.256 MB/second per provisioned IOPS, up to a maximum of 4000 MBps per volume. You can provision 1000 IOPS per GiB of storage, twice as many as before. The increased volume size & higher throughput means that you will no longer need to stripe multiple EBS volumes together, reducing complexity and management overhead.
The preview is currently available in the US East (N. Virginia), US East (Ohio), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Tokyo), and Europe (Frankfurt) Regions. During the preview, we support the use of R5b instances, with support for other Nitro-powered instances in the works.
Now, with the new tiered pricing structure, the first 32,000 IOPS provisioned on a volume are charged at the current base rate ($0.065 per provisioned IOPS-mo) and the second tier between 32,001 and 64,000 is charged at a 30% lower rate ($0.046 per provisioned IOPS-mo).
Furthermore, for customers who have even higher performance requirement than currently supported by a single io2 volume today, we are previewing io2 volumes that run on EBS Block Express, the next generation of our block storage architecture. io2 Block Express volumes can be provisioned to deliver peak IOPS of 256,000. For these volume, any IOPS provisioned over 64,000 IOPS will be charged at a further 30% lower rate than the second tier ($0.032 per provisioned IOP-mo for IOPS over 64,000). This lowers the effective rate to $0.038 per provisioned IOPS on a volume provisioned with 256,000 IOPS.
Today I would like to tell you about gp3, a new type of SSD EBS volume that lets you provision performance independent of storage capacity, and offers a 20% lower price than existing gp2 volume types.
然後直接給你 3000 IOPS 與 125MB/sec,有需要更高的話可以「加購」:
gp3 is designed to provide predictable 3,000 IOPS baseline performance and 125 MiB/s regardless of volume size. It is ideal for applications that require high performance at a low cost such as MySQL, Cassandra, virtual desktops and Hadoop analytics. Customers looking for higher performance can scale up to 16,000 IOPS and 1,000 MiB/s for an additional fee. The top performance of gp3 is 4 times faster than max throughput of gp2 volumes.
If you’re currently using gp2, you can easily migrate your EBS volumes to gp3 using Amazon EBS Elastic Volumes, an existing feature of Amazon EBS. Elastic Volumes allows you to modify the volume type, IOPS, and throughput of your existing EBS volumes without interrupting your Amazon EC2 instances.
在文章裡提到了 Raspberry Pi 4 可以 USB Boot 後帶來的改變 (參考之前寫的「Raspberry Pi 4 可以透過 USB 開機了」這篇),主要是透過 USB3 外接硬碟可以讓讀寫速度大幅提昇 (尤其是 SSD),這一直都是 Raspberry Pi 上面用 SD card 的問題,看起來唯一的問題還是 CPU 的速度還是沒有像目前常見的 x86-64 強。
If you give it fast enough "disk" storage it really moves. I plugged in a Kingston brand 120GB SSD on a USB3 adapter. hdparm -t gave 292MB/s read speed and the default LXDE environment was really crisply responsive, with even a first launch of Chromium taking less than two seconds. With such good storage, the only real limitation is that heavy Javascript stuff is too slow - 5+ seconds to switch between folders in Chrome, or for the thumbnail gallery to appear in Youtube. Also, video calling is marginal. Aside from that the CPU is fast enough.
另外討論裡面也有人希望 Raspberry Pi 考慮引入 eMMC 或是提供 M.2 界面改善讀寫速度,不過我覺得 SD card 的設計算是 Raspberry Pi 當初的方向,本來就有取捨,不太可能什麼都做進去...
不過在「Increased Read Load Over Time」那段還是看到了 workaround:
The read load was still rising a bit but at a much smaller pace. Instead of hours, it was days. That’s kind of expected given the workload and we were already planning for periodic manual compactions.