PostgreSQL 13 的 B-Tree Deduplication

Hacker News 上看到「Lessons Learned from Running Postgres 13: Better Performance, Monitoring & More」這篇文章,其中有提到 PostgreSQL 13 因為 B-Tree 支援 deduplication,所以有機會縮小不少空間。

搜了一下源頭是「Add deduplication to nbtree.」這個 git commit,而 PostgreSQL 官方的說明則是在「63.4.2. Deduplication」這邊可以看到。

另外值得一提的是,這個功能在 CREATE INDEX 這頁可以看到在 PostgreSQL 13 預設會打開使用。

依照說明,看起來本來的機制是當 B-Tree index 內的 key 相同時,像是 key1 = key2 = key3 這樣,他會存 {key1, ptr1}{key2, ptr2}{key3, ptr3}

在新的架構下開啟 deduplication 後就會變成類似 {key1, [ptr1, ptr2, ptr3]} 這樣的結構。可以看出來在 key 重複的資料很多的時候,可以省下大量空間 (以術語來說的話,就是 cardinality 偏低的時候)。

這樣看起來可以降低不少壓力...

MariaDB 的 S3 Engine 效能測試

PerconaMariaDB 在 10.5 (目前的最新穩定版) 裡出的 S3 Engine 給出了簡單的測試報告:「MariaDB S3 Engine: Implementation and Benchmarking」。

這個 engine 顧名思義就是把資料丟到 Amazon S3 上,目前是 alpha 版本,預設是不會載入的,需要開 alpha flag 才能用:

The S3 engine is READ_ONLY so you can’t perform any write operations ( INSERT/UPDATE/DELETE ), but you can change the table structure.

另外這是從 Aria 改出來的 read-only engine,而 Aria 是從 MyISAM 改出來的:

The S3 storage engine is based on the Aria code and the main feature is that you can directly move your table from a local device to S3 using ALTER.

測出來發現在 read-only 的情境下,COUNT(*) 超快,看起來就是跟 MyISAM 體系有關,直接撈 MyISAM 內的資料,所以本地要 18 秒,但放到 S3 反而秒殺 XDDD

整體看起來還不錯?算是一種 Data warehouse 的方案,主要是要用到 row-based format 儲存的優點,遇到一些冷資料可以這樣玩。

從「Using the S3 Storage Engine」這邊的設定方式看到 s3_host_name,看起來有機會接其他家的 S3 API,或是本地的 Storage。

話說 Aria 這個引擎當初最主要的重點就在 crash-safe,在有了 crash-safe 之後,DRBD 這種 block-level replication 機制就可以硬幹上去,後來主力就在擴充其他型態了,像是 GIS 與 virtual column 的功能,不過這些功能本家在 InnoDB 上好像也都陸陸續續跟上來了,單純的 Aria engine 好像還好...

PostgreSQL 的 SERIALIZABLE 的 bug

這是 Jespen 第一次測試 PostgreSQL,就順利找出可重製的 bug 了:「PostgreSQL 12.3」。

第一個 bug 是 REPEATABLE READ 下的問題,不過因為 SQL-92 定義不夠嚴謹的關係,其實算不算是 bug 有討論的空間,這點作者 Kyle Kingsbury 在文章裡也有提出來:

Whether PostgreSQL’s repeatable-read behavior is correct therefore depends on one’s interpretation of the standard. It is surprising that a database based on snapshot isolation would reject the strict interpretation chosen by the seminal paper on SI, but on reflection, the behavior is defensible.

另外一個就比較沒問題了,是 SERIALIZABLE 下的 bug,在 SQL-92 下對 SERIALIZABLE 的定義是這樣:

The execution of concurrent SQL-transactions at isolation level SERIALIZABLE is guaranteed to be serializable. A serializable execution is defined to be an execution of the operations of concurrently executing SQL-transactions that produces the same effect as some serial execution of those same SQL-transactions. A serial execution is one in which each SQL-transaction executes to completion before the next SQL-transaction begins.

也就是說,在 SERIALIZABLE 下一堆 transaction 的執行結果,你至少可以找到一組排序,使得這些 transaction 的結果是等價的。

而 Jespen 順利找出了一組 transaction (兩個 transaction),在 SERIALIZABLE 下都成功 (但不應該成功):

對於這兩個 transaction,不論是上面這條先執行,還是下面這條先執行,都不存在等價的結果,所以不符合 SERIALIZABLE 的要求。

另外也找到一個包括三個 transaction 的情況:

把 transaction 依照執行的結果把 dependency 拉出來,就可以看出來裡面產生了 loop,代表不可能在 SERIALIZABLE 下三個都成功。

在 Jespen 找到這些 bug 後,PostgreSQL 方面也找到軟體內產生 bug 的部份,並且修正了:「Avoid update conflict out serialization anomalies.」,看起來是在 PostgreSQL 引入 Serializable Snapshot Isolation (SSI) 的時候就有這個 bug,所以 9.1 以後的版本都有這個問題...

這次順利打下來,測得很漂亮啊... 翻了一下 Jespen 上的記錄,發現好像還沒測過 MySQL,應該會是後續的目標?

SQL-92 裡定義 Isolation Level 的背景

Twitter 上看到這則推,講到在 SQL-92 裡面 Isolation Level 定義的背景:

先是講了為什麼有 SERIALIZABLEREPEATABLE READREAD COMMITTED,然後講為什麼是用 anomalies 定義 (除了 SERIALIZABLE),也因此造成了定義不清楚而導致問題。

SQL-92 的 isolation 問題後來在其他文件裡面有被討論,像是 1995 年的「A Critique of ANSI SQL Isolation Levels」,以及 2000 年的論文「Generalized Isolation Level Definitions」,過了二十年後的現在,大家也都大概知道有哪些雷區了。

另外講到 Isolation Level,實務上會希望知道 database 與標準之間的差異,在「Hermitage: Testing transaction isolation levels」這篇可以看到各家 RDBMS 在不同設定下實際的 isolation level,包括了 open source 的 MySQLPostgreSQL 與商用常遇到的 OracleMicrosoft SQL Server

MySQL 的 REPEATABLE READ 因為 SQL-92 的定義不清楚,所以大概知道這邊本來就有爭議,比較意外的反倒是 Oracle 裡面的 SERIALIZABLE 實際上是 Snapshot Isolation,沒有辦法達到 SQL-92 裡面最高等級的 Isolation Level。

然後發現有些知識還是有漏,趁這個機會補...

SQL Antipatterns: Avoiding the Pitfalls of Database Programming

標題裡是說這本書:「SQL Antipatterns: Avoiding the Pitfalls of Database Programming」,在 2010 年出版的書。

我是在 Hacker News Daily 上看到「Ask HN: What are some examples of good database schema designs?」這篇,裡面提到了這本書,看了一下章節看到只有 USD$25 就馬上先買起來丟到 Kindle 裡面...

這不是給資料庫初學者看的書,主要的讀者是對於「標準」夠熟 (學校教的那些理論基礎,像是各種 index 的底層結構,正規化的方法,以及正規化的原因),然後也有一些實務經驗後的開發者。

因為裡面把常遇到的問題,與可能的解決方式 (通常都違反當初在學校學的理論基礎) 整理成這本書,在底子還沒打穩前跑來看這本書並不是個好主意...

另外裡面雖然不一定有提到,但有蠻多技巧其實是用在「為了效能而不則手段」的情境下,所以這些內容對於想要調校比較大的網站應該也是很有幫助。

從 Oracle 轉移到 PostgreSQL 的工具 Orafce

在「Migrating from Oracle to PostgreSQL: Tips and Tricks」這邊看到在討論怎麼從 Oracle 資料庫轉移到 PostgreSQL 上。

開頭介紹了 Orafce,實做了一些 Oracle 上的 function,可以使得轉移時不用改寫太多 SQL:

The "orafce" project implements of some functions from the Oracle database. The functionality was verified on Oracle 10g, and the module is useful for production work.

先記錄起來,之後如果有機會的話比較好找...

把 PostgreSQL 的 EXPLAIN 轉成 Flamegraph

Hacker News Daily 上看到 mgartner/pg_flame 這個專案,可以把 PostgreSQLEXPLAIN 結果 (JSON 格式) 轉成 Flamegraph (用 HTML 呈現):

不過我是直接看 EXPLAIN 的輸出比較習慣... 但如果需要做投影片的時候,應該是個好工具?

RDBMS 裡的各種 Lock 與 Isolation Level

來推薦其他人寫的文章 (雖然是在 Medium 上...):「複習資料庫的 Isolation Level 與圖解五個常見的 Race Conditions」、「對於 MySQL Repeatable Read Isolation 常見的三個誤解」,另外再推薦英文維基百科上的「Snapshot isolation」條目。

兩篇文章都是中文 (另外一個是英文維基百科條目),就不重複講了,這邊主要是拉條目的內容記錄起來,然後寫一些感想...

SQL-92 定義 Isolation 的時候,技術還沒有這麼成熟,所以當時在訂的時候其實是以當時的技術背景設計 Isolation,所以當技術發展起來後,發生了一些 SQL-92 的定義沒那麼好用的情況:

Unfortunately, the ANSI SQL-92 standard was written with a lock-based database in mind, and hence is rather vague when applied to MVCC systems. Berenson et al. wrote a paper in 1995 critiquing the SQL standard, and cited snapshot isolation as an example of an isolation level that did not exhibit the standard anomalies described in the ANSI SQL-92 standard, yet still had anomalous behaviour when compared with serializable transactions.

其中一個就是 Snapshot Isolation,近代的資料庫系統都用這個概念實做,但實際上又有不少差別...

另外「Jepsen: MariaDB Galera Cluster」這篇裡出現的這張也很有用,裡面描述了不同層級之間會發生的問題:

這算是當系統有一點規模時 (i.e. 不太可能使用 SERIALIZABLE 避免這類問題),開發者需要了解的資料庫限制...

在 SQL 裡面避免大量刪除資料的方式

看到 Percona 的「An Overview of Sharding in PostgreSQL and How it Relates to MongoDB’s」這篇,雖然是在講 PostgreSQL 上的 sharding (以及 partition),突然想到好像沒寫過要怎麼避免大量刪除資料的操作...

一個常見的情境是,想要讓某個表格只保留這一個月的資料,所以每個月開頭都會跑一隻 cron job 負責刪掉上個月的資料,像是 DELETE FROM xxx WHERE timestamp < yyy; 這樣的指令。

這個方式無論是在 PostgreSQL 或是 MySQL 都需要很多時間與 I/O 資源,而透過 partition 將不同時間區段切開到不同的表格,再用 TRUNCATE 直接清空表格剛好可以解這樣的問題。

Percona 的文章裡說了一些 PostgreSQL 的歷史與目前的進展。

在 PostgreSQL 9 或更早以前的版本,一個常見的作法是透過 table inheritance 實做 partition,然後用再用 function 實做 INSERT

CREATE TABLE temperature (
  id BIGSERIAL PRIMARY KEY NOT NULL,
  city_id INT NOT NULL,
  timestamp TIMESTAMP NOT NULL,
  temp DECIMAL(5,2) NOT NULL
);

CREATE TABLE temperature_201901 (CHECK (timestamp >= DATE '2019-01-01' AND timestamp <= DATE '2019-01-31')) INHERITS (temperature);
CREATE TABLE temperature_201902 (CHECK (timestamp >= DATE '2019-02-01' AND timestamp <= DATE '2019-02-28')) INHERITS (temperature);
CREATE TABLE temperature_201903 (CHECK (timestamp >= DATE '2019-03-01' AND timestamp <= DATE '2019-03-31')) INHERITS (temperature);

CREATE OR REPLACE FUNCTION temperature_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
    IF ( NEW.timestamp >= DATE '2019-01-01' AND NEW.timestamp <= DATE '2019-01-31' ) THEN INSERT INTO temperature_201901 VALUES (NEW.*);
    ELSIF ( NEW.timestamp >= DATE '2019-02-01' AND NEW.timestamp <= DATE '2019-02-28' ) THEN INSERT INTO temperature_201902 VALUES (NEW.*);
    ELSIF ( NEW.timestamp >= DATE '2019-03-01' AND NEW.timestamp <= DATE '2019-03-31' ) THEN INSERT INTO temperature_201903 VALUES (NEW.*);
    ELSE RAISE EXCEPTION 'Date out of range!';
    END IF;
    RETURN NULL;
END;
$$
LANGUAGE plpgsql;

在 PostgreSQL 10 之後,就直接支援一些與 partition 相關的設計,像是這樣:

CREATE TABLE temperature (
  id BIGSERIAL NOT NULL,
  city_id INT NOT NULL,
  timestamp TIMESTAMP NOT NULL,
  temp DECIMAL(5,2) NOT NULL
) PARTITION BY RANGE (timestamp);

CREATE TABLE temperature_201901 PARTITION OF temperature FOR VALUES FROM ('2019-01-01') TO ('2019-02-01');
CREATE TABLE temperature_201902 PARTITION OF temperature FOR VALUES FROM ('2019-02-01') TO ('2019-03-01');
CREATE TABLE temperature_201903 PARTITION OF temperature FOR VALUES FROM ('2019-03-01') TO ('2019-04-01');

雖然還是有些限制,但可以看出比起以前簡單不少。

而有了 partition 後,文章的後續就在討論這跟 MongoDB 的 sharding 有什麼關係,但這就不是我關注的事情了...

CockroachDB 也拋棄 Open Source License 了

CockroachDB 的主力在於 PostgreSQL 的相容層 (包括底層資料結構,SQL 語法,以及 Protocol,所以原有的 client 不需要太多修改就可以用),並且提供橫向擴充的能力 (實作類似於 F1 與 Spanner 這些論文的功能)。

現在他們也宣佈拋棄 Open Source License 了,從本來的 Apache License 2.0 轉為他們自己定義的 Business Source License:「Why We’re Relicensing CockroachDB」。

最大的差異就是擋提供服務:

The one and only thing that you cannot do is offer a commercial version of CockroachDB as a service without buying a license.

商業版本最終會以 open source license 釋出,但會有三年延遲 (以現在的社群速度,基本上就等於不提供了),不算太意外,但這樣的話也需要先從可用的列表上移除了...