用 Ephemeral Storage 加速 MySQL over ZFS 的效能

Percona 的「MySQL/ZFS in the Cloud, Leveraging Ephemeral Storage」這篇裡面在探討是不是可以看看 ZFS 在 Ephemeral Storage (機器附的本地硬碟) 上的效能。

一開始測試是直接當主力硬碟來測,可以看到跑 ZFS 的情況下,本地的 storage 還是會比 SSD Premium (這是 Azure 的產品線) 還快不少:

但把資料放在本地的 storage 上其實有點刺激,至少在 production 應該不太會這樣搞,所以後面用 L2ARC 的方式來測,可以看到效率提昇相當明顯,甚至接近本來直接把資料放在本地的 storage:

另外測了 ext4/bcache,看起來效率就沒那麼好:

這樣看起來是個不錯的選擇...

Amazon EC2 上的一些小常識

Twitter 上看到 Laravel News 轉發了「Mistakes I've Made in AWS」這篇,講 Amazon EC2 上面的一些小常識。

在 EC2 中,T 系列的機器 (目前主要是 t2/t3/t3a/t4g) 對於開發很好用,甚至對於量還不大的 production system 也很好用,加上 Unlimited 模式可以讓你在 CPU credit 用完時付錢繼續 burst。

文章裡面有討論到,使用 T 系列機器時,常常是不怎麼需要大量 CPU 資源的情境,這時候 AMD-based 的 t3a 通常都是個還不錯的選擇,大概會比 Intel-based 的 t3 省 10% 的費用。另外如果可以接受 ARM-based 的話,t4g 也是個選項,價錢會更便宜而且在很多應用下速度會更快。不過同事有遇到 Python 上面跑起來的行為跟 x86-64-based 的不同,這點就得自己琢磨了...

另外就是目前的 EBS 預設還是會使用 gp2,而在 gp3 出來後其實大多數的情況下應該可以換過去,主要就是便宜了 20%,加上固定的 3000 IOPS。

不過也是有些情境下是不應該換的,主要是 gp2 可以 burst 到 250MB/sec,但 gp3 只給了 125MB/sec。雖然 gp3 可以加價買 throughput,但加價的費用不低,這種需求改用 gp2 應該會比較划算。

不過這邊推薦比較技術的作法,可以掛兩個 gp3 (也可以更多) 跑 RAID0 (像是在 Linux 上可以透過 mdadm 操作),這樣 IOPS 與 throughput 都應該可以拉上來...

Percona 連載到 PostgreSQL 存 JSON object 以及增加 Index 的方式了...

先前 Percona 的人在講 MySQL 存 JSON object 的方式,現在開始講在 PostgreSQL 裡存 JSON object,並且增加 index 的方式了:「Storing and Using JSON Within PostgreSQL Part One」。

這基本上就是不想用 MongoDB,但還是有需要極為彈性而選擇用 JSON object 的需求。

首先先先建立一個表格,這邊直接用 JSONB:

alice=# CREATE TABLE table1 (id SERIAL PRIMARY KEY, jb JSONB);

接著拿「A dataset of English plaintext jokes」這邊的 reddit_jokes.json 來玩,我先把 JSON 裡面的內容變成 JSON Lines 格式:

cat reddit_jokes.json | jq -c '.[]' > reddit_jokes.jsonl

然後 COPY 了十次,多一點資料,後面可以看效能:

alice=# COPY table1 (jb) FROM '/tmp/reddit_jokes.jsonl' CSV QUOTE e'\x01' DELIMITER e'\x02';
-- (repeat this command 10 times)

接著跑個 SELECT 看看速度,我跑了幾次大約都在 260ms 上下:

alice=# SELECT COUNT(*) FROM table1 WHERE (jb->>'score')::int = 10;
 count 
-------
 25510
(1 row)

Time: 264.023 ms

然後針對 score 生個數字的 index:

alice=# CREATE INDEX ON table1 (((jb->>'score')::int));
CREATE INDEX
Time: 1218.503 ms (00:01.219)

接著再跑 SELECT 下去,可以看到速度快超多:

alice=# SELECT COUNT(*) FROM table1 WHERE (jb->>'score')::int = 10;
 count 
-------
 25510
(1 row)

Time: 12.735 ms

另外也可以加 column:

alice=# ALTER TABLE table1 ADD COLUMN score INT GENERATED ALWAYS AS ((jb->>'score')::int) STORED;

然後可以看到速度也不快:

alice=# SELECT COUNT(*) FROM table1 WHERE score = 10;
 count 
-------
 25510
(1 row)

Time: 222.163 ms

幫他補 index:

alice=# CREATE INDEX ON table1 (score);

速度有變快,但不知道為什麼沒有 JSONB 的版本快:

alice=# SELECT COUNT(*) FROM table1 WHERE score = 10;
 count 
-------
 25510
(1 row)

Time: 81.346 ms

算是還蠻好用的,不過得學 JSON query 語法... (應該是還好)

2019 年 Percona 對 UUID 當作 Primary Key 的看法

前陣子的「為資料庫提案新的 UUID 格式」這邊提到了有人提案要增加新的 UUID 格式,Percona 的老大 Peter ZaitsevTwitter 上貼了「UUIDs are Popular, but Bad for Performance — Let’s Discuss」這篇在 2019 年時他們家的文章,題到了 MySQL 使用 UUID 當作 Primary Key 的事情:

要注意的是這篇文章沒有要從頭解釋 UUID 對於 Primary Key 的壞處,如果你想要先了解的話,在這篇文章的開頭給了一堆其他文章的連結,裡面就有討論過了。

這篇主要是在討論,如果硬要用 UUID 當 Primary Key 時,可以有什麼方法降低對 InnoDB 的衝擊,剛好回應最近的提案。

開頭還是先花了一些篇幅大概講一下 UUID 的種類,然後在「What is so Wrong with UUID Values?」這邊提到了字串比較的差異,如果 UUID 是到最後一碼才不同的話 (這邊是跑 df878007-80da-11e9-93dd-00163e000002 與 df878007-80da-11e9-93dd-00163e000003 與比較一億次):

1 row in set (27.67 sec)

但如果是一開始就不同的話 (這邊是選擇 df878007-80da-11e9-93dd-00163e000002ef878007-80da-11e9-93dd-00163e000003) 會快很多:

1 row in set (2.45 sec)

但如果與數字相比的話 (這邊是 2=3 這樣的條件去比):

1 row in set (0.96 sec)

可以看數字在這邊的優勢,另外也是在說明,如果你用的是 time-based ordering 的 UUID,要考慮會遇到這個可能會發生的效能問題。

再來是玩 UUID 的三種不同的儲存方式對於寫入效能的差異,分別是 CHAR(36) (32 bytes 的 hex 加上四個 -)、base64 (用 CHAR(22) 存) 與 BINARY(16),可以看出來 BINARY(16) 因為佔用空間比較小的關係,是可以高速寫入持續最久的,再來是 base64,最差的是 CHAR(36)

後面給了兩個 workaround,第一個算是定義了另外一種產生 128 bits 的方式,第二個則是想辦法把 UUID 對應到數字。

這在 MySQL 的環境裡面算是被討論的很久的主題了。(我猜在 PostgreSQL 應該也是,不過 PostgreSQL 的社群沒跟那麼久...)

MySQL 在不同種類 EBS 上的效能

Percona 的人寫了一篇關於 MySQL 跑在 AWS 上不同種類 EBS 的效能差異:「Performance of Various EBS Storage Types in AWS」,不過這篇的描述部份不是很專業,重點是直接看測試資料建立自己的理解。

他的方法是在 AWS 上建立了相同參數的 gp2gp3io1io2 空間,都是 1TB 與 3000 IOPS,但他提到這應該會一樣:

So, all the volumes are 1TB with 3000 iops, so in theory, they are the same.

但這在「Amazon EBS volume types」文件上其實都有提過了,先不管 durability 的部份,光是與效能有關的規格就不一樣了。

在 gp2 的部份直接有提到只有保證 99% 的時間可以達到宣稱的效能:

AWS designs gp2 volumes to deliver their provisioned performance 99% of the time.

而 gp3 則是只用行銷宣稱「consistent baseline rate」,連 99% 都不保證:

These volumes deliver a consistent baseline rate of 3,000 IOPS and 125 MiB/s, included with the price of storage.

io* 的部份則是保證 99.9%:

Provisioned IOPS SSD volumes use a consistent IOPS rate, which you specify when you create the volume, and Amazon EBS delivers the provisioned performance 99.9 percent of the time.

另外在測試中 gp2gp3 的 throughput 看起來也沒調整成一樣的數字。在 1TB 的 gp2 中會給 250MB/sec 的速度,1TB 的 gp3 則是給 125MB/sec,除非你有加買 throughput。

另外從這句也可以看出來他對 AWS 不熟:

The tests were only run in a single availability zone (eu-west-1a).

在「AZ IDs for your AWS resources」這邊有提過不同帳號之間,同樣代碼的 AZ 不一定是一樣的區域,需要看 AZ ID:

For example, the Availability Zone us-east-1a for your AWS account might not have the same location as us-east-1a for another AWS account.

To identify the location of your resources relative to your accounts, you must use the AZ ID, which is a unique and consistent identifier for an Availability Zone. For example, use1-az1 is an AZ ID for the us-east-1 Region and it is the same location in every AWS account.

在考慮到只有設定大小與 IOPS 的情況下,剩下的測試結果其實跟預期的差不多:io2 貴但是可以得到最好的效能,io1 的品質會差一些,gp3 在大多數的情況下其實很夠用,但要注意預設的 throughput 沒有 gp2 高。

Amazon EC2 的網路效能

前一篇「在 AWS 上面的 OpenVPN Server 效能」最後的問題就是 EC2 instance 本身的網路效能,畢竟是公司要用的,還是實際測一下數字,之後有人接手的時候也比較清楚是怎麼選這個大小的...

這邊拿的是 AWSap-southeast-1 (Singapore) 的 EC2 測試,直接在同一個 subnet 裡面開兩台一樣的機器跑 iperf 測試。

機器開機後會先跑這串指令 (除了安裝 iperf 的指令,其他的是出自我自己 wiki 上的 Ubuntu 這頁),然後再重開機:

sudo fallocate -l 512M /swapfile; sudo chmod 600 /swapfile; sudo mkswap /swapfile; sudo swapon /swapfile; echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab; echo -e "net.core.default_qdisc=fq\nnet.ipv4.tcp_congestion_control=bbr" | sudo tee /etc/sysctl.d/99-tcp.conf; sudo sysctl -p /etc/sysctl.d/99-tcp.conf; sudo apt update; sudo apt dist-upgrade -y; sudo apt install -y apache2-utils apt-transport-https build-essential curl dnsutils dstat git jq locales moreutils most mtr-tiny net-tools p7zip-full pigz prometheus-node-exporter rsync sharutils software-properties-common sysstat unrar unzip vim-nox wget zsh zsh-syntax-highlighting zstd; sudo apt install -y iperf; sudo apt clean

接下來就是一台跑 iperf -s,另外一台跑 iperf -c 10.x.x.x -i 1 -t 3600 讓他跑一個小時看結果了。

我都有跑 tmux 再連到這些機器上,這樣可以捲回去看每一秒的傳輸速度,就可以看出來變化了,不過這邊還是簡單的只列出最高速度 (burstable) 與穩定輸出的速度 (baseline):

EC2 instance Baseline Burstable vCPU RAM Pricing (USD$)
c6g.medium 500Mbps 10Gbps 1 2GB 0.0392
c6g.large 750Mbps 5Gbps (claimed 10Gbps) 2 4GB 0.0784
c6g.xlarge 1.25Gbps 10Gbps 4 8GB 0.1568
t4g.small 125Mbps 5Gbps 2 2GB 0.0212
t4g.medium 255Mbps 5Gbps 2 4GB 0.0424
t4g.large 510Mbps 5Gbps 2 8GB 0.0848
t4g.xlarge 1Gbps 5Gbps 4 16GB 0.1696

這邊沒列出來的是 burstable 可以持續的時間,但這跟你機器吃的網路資源有關,我就決定只用 baseline 來做決策了,這樣可能會多花一點錢,但會少很多麻煩。

另外這次在處理的過程有被同事提醒各種 bandwidth overhead,所以就順便查了一下資料:

  • OpenVPN 本身的 overhead 大約是 5% (跑 UDP 的時候):「OpenVPN performance」。
  • SSH 也有些 overhead,大約是 6% (把來回的封包都算進去):「What is the overhead of SSH compared to telnet?」。
  • rsync 的部份鐵定也有 overhead,但這邊就沒找到現成的文章有統計過了。
  • 另外我自己之前做實驗發現 TCP BBR 的 retransmission algorithm 還蠻激進的,會有 10% packet loss,改用預設的 CUBIC 會好很多,大約 1% 到 2% 左右。

綜合這些測試,我自己抓了 35% 的 overhead 來推估,最後是用 c6g.large 來養 VPN server。750Mbps 的實際流量大約可以包進 550Mbps 的原始流量,大約是 68MB/sec。

不過新加坡與印尼之間的 internet bandwidth 好像還是不太夠,有時候深夜跑也跑不滿... 不過之後 VPN 上的 client 會愈來愈多,應該是不需要降...

在 AWS 上面的 OpenVPN Server 效能

這篇的後續可以參考「Amazon EC2 的網路效能」這篇。

最近在在調整跑在 Amazon EC2OpenVPN server 的效能,要想辦法把 network throughput 拉高,當作在導入 WireGuard 之前的 workaround,但看起來還是頗有用,記錄一下可以調整的部份...

在還沒灌大量流量前是用 t3a.nano (開 Unlimited mode),然後會觀察到的瓶頸是 OpenVPN 的 daemon 吃了 100% CPU loading,最高速度卡在 42MB/sec 左右。

第一個想到的是看看 OpenVPN server 有沒有可以使用多 CPU 的方式,但查了資料發現 OpenVPN server 無法使用 threading 或是 fork 之類的方法善用多顆 CPU,所以就開始想其他方法...

接著看到我們目前用的是 AES-256-CBC 了,網路上很多文章都有提到 AES-128-CBC 會快一些,但我們的 OpenVPN client 已經是設死都用 AES-256-CBC 了,這個就沒辦法了...

而第一個可行的解法是把 AMD-based 的 t3a.nano 換成 ARM-based 的 t4g.nano,還是 100% 的 CPU loading,但直接多了 50%+ 的效能,到了 69MB/sec。

第二個解法是找資料時發現的 fast-io 參數,加上去以後可以再快一些,到 77MB/sec。

有了這兩個 workaround 應該就堪用了,接下來是發現在傳大量資料跑一陣子後速度會掉下來,於是開了兩台 t4g.nanoiperf 對測了一下,發現會逐步掉速:

  • 前 15 秒可以直接到 5Gbps,就是 AWS 網頁上宣稱的最高速度,接下來降到 800Mbps 左右。
  • 到 180 秒左右後降到 300Mbps。
  • 到 210 秒左右後回到 800Mbps。
  • 到 300 秒左右後降到 500Mbps。
  • 到 300 秒左右後降到 300Mbps。
  • 到 1260 秒左右後降到 30Mbps,後面就一直維持這個速度了。

看起來 network bandwidth credit 是分階段的,但 30Mbps 真的有點低...

在換成四倍大的 t4g.small 測試後發現也只能到 40MB/sec 左右 (比較疑惑的是,居然不是四倍?),目前上了 c6g.medium,但看起來網路的部份也還是有瓶頸,在 46MB/sec 左右,要再想一下下一步要怎麼調整...

但以目前看到的情況總結,如果能用 ARM 架構就儘量用,效率與價錢真的是好 x86-64 不少...

AWS 宣佈 EBS io2 的新花樣 Block Express Volumes

看到「AWS Announces General Availability of Amazon EBS io2 Block Express Volumes」這篇,在 EBSio2 上面又推出了新的花樣 Block Express Volumes:

Today AWS announced general availability of io2 Block Express volumes that deliver up to 4x higher throughput, IOPS, and capacity than io2 volumes, and are designed to deliver sub-millisecond latency and 99.999% durability.

要再提供更高的效能,在 R5b 的機種下,單個 volume 可以拉到 256k IOPS 與 4000MB/sec 的傳輸速度,以及在 well-tuned 的環境下 (應該是多個 volume) 可以拉到 260k IOPS (多一點點) 與 7500MB/sec (將近原來的兩倍) 的傳輸速度:

Using R5b instances customers can now provision a single io2 volume with up to 256,000 IOPS, 4000 MB/s of throughput, and storage capacity of 64 TiB.

R5b instances are well-suited to run business-critical and storage-intensive applications as they offer the highest EBS-optimized performance of up to 260,000 IOPS and 7,500 MB/s throughput.

是個用錢炸效能的東西,用的到的就用...

快速產生 SQLite 資料的方式:一分鐘內產生十億筆資料

在「Towards Inserting One Billion Rows in SQLite Under A Minute」這邊看到作者想要在一分鐘內在 MBP 2019 上面寫 1B 筆資料進 SQLite,裡面有些方法還蠻值得玩一下的,這台 MBP 2019 機器的規格是:

The machine I am using is MacBook Pro, 2019 (2.4 GHz Quad Core i5, 8GB, 256GB SSD, Big Sur 11.1)

第一版是 Python 寫的,塞 10M 筆花了 15 分鐘:

In this script, I tried to insert 10M rows, one by one, in a for loop. This version took close to 15 minutes, sparked my curiosity and made me explore further to reduce the time.

加了五個 PRAGMA 的版本變成 100M 筆十分鐘:

The naive for loop version took about 10 minutes to insert 100M rows.

用批次處理則可以降到八分半:

The batched version took about 8.5 minutes to insert 100M rows.

再來是拿經典神器 PyPy 出來用,降到兩分半:

All I had to do was run my existing code, without any change, using PyPy. It worked and the speed bump was phenomenal. The batched version took only 2.5 minutes to insert 100M rows. I got close to 3.5x speed :)

接下來就是跳槽到 Rust 了,中間也有不少 tuning 相關的討論,但直接先跳到最後面好了... 最後 100M 只用了 33 秒:

I created a threaded version, where I had one writer thread that received data from a channel and four other threads which pushed data to the channel. This is the current best version which took about 32.37 seconds.

能用 PyPy 的地方還是可以考慮一下的...

Chromium 系列瀏覽器對 Google Search Engine 的不公平最佳化

在 tab 上放了一陣子的連結,忘記是哪邊看到的,在講 Chromium 系列瀏覽器會針對 Google Search Engine 最佳化:「Google’s unfair performance advantage in Chrome」。

作者發現 Chromium 瀏覽器會預先開 HTTPS 連線連到搜尋引擎,這樣可以大幅降低建立 HTTPS 連線時所需要的時間,包括了 DNS 查詢、TCP handshake 與 TLS handshake:

I was looking for something else when I stumbled upon a feature called PreconnectToSearch. When enabled, the feature preemptively opens and maintains a connection to the default search engine.

問題在於這個功能只開給 Google Search 使用:

There’s just one small catch: Chromium checks the default search engine setting, and only enables the feature when it’s set to Google Search.

search_engine_preconnector.cc (HEAD 版本) 這邊可以看到這段程式碼:

// Feature to limit experimentation to Google search only.
const base::Feature kPreconnectToSearchNonGoogle{
    "PreconnectToSearchNonGoogle", base::FEATURE_DISABLED_BY_DEFAULT};
}  // namespace features

作者有提到,的確這個功能會對 search engine 有不小的衝擊,但可以透過擴充 OpenSearch Descriptions 或是 Well-Known URI 的方式提供,現在這樣寫死在程式碼裡面完全就是不公平競爭。