Tag Archives: space

用 NN 演算法重製 Full HD 版的 Star Trek: DS9

看到「Remastering Star Trek: Deep Space Nine With Machine Learning」這篇,裡面用了類神經網路演算法,將本來只有 480p (SD) 的 Star Trek: DS9 升到 1080p (Full HD) 的版本,而且看起來效果還不錯...

意外的看到有人拿 Star Trek 的材料來玩... 依照作者的說明,DS9 一直沒有 Full HD 版的其中一個原因反而是因為「數位化」了。使用類比膠卷的母帶可以透過更高規格的重新掃描而得到高畫質版本,但 DS9 的母帶似乎已經是數位版了,所以反而造成無法透過重新掃描的方式取得 Full HD 版本:

While you can rescan analog film at a higher resolution, video is digital and can't be rescanned. This makes it much costlier to remaster this TV show, which is one of the reasons why it hasn't happened.

現有的 upscale 技術主要都還是以圖片為主,所以作者本來以為對於動態畫面的處理會遇到問題,但蠻意外的超出預期,從影片可以看出來:

看起來之後的 remaster 版本有可能可以靠這個方法先做初步,然後再讓人進去修?

Amazon EBS (gp2) 提昇效能...

AWS 宣佈提昇了 Amazon EBS (gp2) 的效能:「Amazon EBS Increases Performance of General Purpose SSD (gp2) Volumes」。

本來上限是 10k IOPS,現在提升到 16k IOPS 了。另外最大傳輸速度也從 160 MB/sec 提升到 250 MB/sec:

Today we are announcing a 60% improvement in performance of General Purpose SSD (gp2) Volumes from 10,000 IOPS to 16,000 IOPS and from 160 MB/s to 250 MB/s of throughput per volume.

應該還是維持 3 IOPS per GB 的設計,但這對於想要用 gp2 堆效能的人來說算是好消息,可以用更大的空間堆出更多 IOPS 了... (像是「Percona 的人接受 AWS 的建議,重新測試了 Percona XtraDB Cluster 在 gp2 上的效能...」這篇)

GitHub 在計畫讓使用者可以用自然語言搜尋...

GitHub 計畫讓使用者可以用自然語言搜尋,目前還在測試階段:「Towards Natural Language Semantic Code Search」。

看起來是透過不同的 encoder,轉到 vector space 後查詢:

在文章裡是拿「ping REST api and return results」當作範例:

之後找範例與用法就不用只在 StackOverflow 上找了... (咦)

用 column -t 排版...

LINE Engineering Blog 上看到「Best practices to secure your SSL/TLS Implementation」這篇,標題是英文但內文全部都是日文的文章,想說翻一下看看到底是怎麼一回事,然後看到這個有趣的指令...

首先先用 openssl ciphers -v AESGCM,可以看到排不整齊的 cipher 列表:

ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH     Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH     Au=RSA  Enc=AESGCM(256) Mac=AEAD
DHE-DSS-AES256-GCM-SHA384 TLSv1.2 Kx=DH       Au=DSS  Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH       Au=RSA  Enc=AESGCM(256) Mac=AEAD
ADH-AES256-GCM-SHA384   TLSv1.2 Kx=DH       Au=None Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH     Au=ECDSA Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH     Au=RSA  Enc=AESGCM(128) Mac=AEAD
DHE-DSS-AES128-GCM-SHA256 TLSv1.2 Kx=DH       Au=DSS  Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=DH       Au=RSA  Enc=AESGCM(128) Mac=AEAD
ADH-AES128-GCM-SHA256   TLSv1.2 Kx=DH       Au=None Enc=AESGCM(128) Mac=AEAD
RSA-PSK-AES256-GCM-SHA384 TLSv1.2 Kx=RSAPSK   Au=RSA  Enc=AESGCM(256) Mac=AEAD
DHE-PSK-AES256-GCM-SHA384 TLSv1.2 Kx=DHEPSK   Au=PSK  Enc=AESGCM(256) Mac=AEAD
AES256-GCM-SHA384       TLSv1.2 Kx=RSA      Au=RSA  Enc=AESGCM(256) Mac=AEAD
PSK-AES256-GCM-SHA384   TLSv1.2 Kx=PSK      Au=PSK  Enc=AESGCM(256) Mac=AEAD
RSA-PSK-AES128-GCM-SHA256 TLSv1.2 Kx=RSAPSK   Au=RSA  Enc=AESGCM(128) Mac=AEAD
DHE-PSK-AES128-GCM-SHA256 TLSv1.2 Kx=DHEPSK   Au=PSK  Enc=AESGCM(128) Mac=AEAD
AES128-GCM-SHA256       TLSv1.2 Kx=RSA      Au=RSA  Enc=AESGCM(128) Mac=AEAD
PSK-AES128-GCM-SHA256   TLSv1.2 Kx=PSK      Au=PSK  Enc=AESGCM(128) Mac=AEAD

而想用 tab 替換掉空白,讓輸出整齊一些,用 openssl ciphers -v AESGCM | sed -E 's/ +/\t/g' 看起來比原來好一些,但還是有點亂 (因為 tab 換 8 spaces 的關係):

ECDHE-ECDSA-AES256-GCM-SHA384   TLSv1.2 Kx=ECDH Au=ECDSA        Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-GCM-SHA384     TLSv1.2 Kx=ECDH Au=RSA  Enc=AESGCM(256) Mac=AEAD
DHE-DSS-AES256-GCM-SHA384       TLSv1.2 Kx=DH   Au=DSS  Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-GCM-SHA384       TLSv1.2 Kx=DH   Au=RSA  Enc=AESGCM(256) Mac=AEAD
ADH-AES256-GCM-SHA384   TLSv1.2 Kx=DH   Au=None Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES128-GCM-SHA256   TLSv1.2 Kx=ECDH Au=ECDSA        Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-GCM-SHA256     TLSv1.2 Kx=ECDH Au=RSA  Enc=AESGCM(128) Mac=AEAD
DHE-DSS-AES128-GCM-SHA256       TLSv1.2 Kx=DH   Au=DSS  Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-GCM-SHA256       TLSv1.2 Kx=DH   Au=RSA  Enc=AESGCM(128) Mac=AEAD
ADH-AES128-GCM-SHA256   TLSv1.2 Kx=DH   Au=None Enc=AESGCM(128) Mac=AEAD
RSA-PSK-AES256-GCM-SHA384       TLSv1.2 Kx=RSAPSK       Au=RSA  Enc=AESGCM(256) Mac=AEAD
DHE-PSK-AES256-GCM-SHA384       TLSv1.2 Kx=DHEPSK       Au=PSK  Enc=AESGCM(256) Mac=AEAD
AES256-GCM-SHA384       TLSv1.2 Kx=RSA  Au=RSA  Enc=AESGCM(256) Mac=AEAD
PSK-AES256-GCM-SHA384   TLSv1.2 Kx=PSK  Au=PSK  Enc=AESGCM(256) Mac=AEAD
RSA-PSK-AES128-GCM-SHA256       TLSv1.2 Kx=RSAPSK       Au=RSA  Enc=AESGCM(128) Mac=AEAD
DHE-PSK-AES128-GCM-SHA256       TLSv1.2 Kx=DHEPSK       Au=PSK  Enc=AESGCM(128) Mac=AEAD
AES128-GCM-SHA256       TLSv1.2 Kx=RSA  Au=RSA  Enc=AESGCM(128) Mac=AEAD
PSK-AES128-GCM-SHA256   TLSv1.2 Kx=PSK  Au=PSK  Enc=AESGCM(128) Mac=AEAD

openssl ciphers -v AESGCM | column -t 看起來效果是最好的:

ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2  Kx=ECDH    Au=ECDSA  Enc=AESGCM(256)  Mac=AEAD
ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2  Kx=ECDH    Au=RSA    Enc=AESGCM(256)  Mac=AEAD
DHE-DSS-AES256-GCM-SHA384      TLSv1.2  Kx=DH      Au=DSS    Enc=AESGCM(256)  Mac=AEAD
DHE-RSA-AES256-GCM-SHA384      TLSv1.2  Kx=DH      Au=RSA    Enc=AESGCM(256)  Mac=AEAD
ADH-AES256-GCM-SHA384          TLSv1.2  Kx=DH      Au=None   Enc=AESGCM(256)  Mac=AEAD
ECDHE-ECDSA-AES128-GCM-SHA256  TLSv1.2  Kx=ECDH    Au=ECDSA  Enc=AESGCM(128)  Mac=AEAD
ECDHE-RSA-AES128-GCM-SHA256    TLSv1.2  Kx=ECDH    Au=RSA    Enc=AESGCM(128)  Mac=AEAD
DHE-DSS-AES128-GCM-SHA256      TLSv1.2  Kx=DH      Au=DSS    Enc=AESGCM(128)  Mac=AEAD
DHE-RSA-AES128-GCM-SHA256      TLSv1.2  Kx=DH      Au=RSA    Enc=AESGCM(128)  Mac=AEAD
ADH-AES128-GCM-SHA256          TLSv1.2  Kx=DH      Au=None   Enc=AESGCM(128)  Mac=AEAD
RSA-PSK-AES256-GCM-SHA384      TLSv1.2  Kx=RSAPSK  Au=RSA    Enc=AESGCM(256)  Mac=AEAD
DHE-PSK-AES256-GCM-SHA384      TLSv1.2  Kx=DHEPSK  Au=PSK    Enc=AESGCM(256)  Mac=AEAD
AES256-GCM-SHA384              TLSv1.2  Kx=RSA     Au=RSA    Enc=AESGCM(256)  Mac=AEAD
PSK-AES256-GCM-SHA384          TLSv1.2  Kx=PSK     Au=PSK    Enc=AESGCM(256)  Mac=AEAD
RSA-PSK-AES128-GCM-SHA256      TLSv1.2  Kx=RSAPSK  Au=RSA    Enc=AESGCM(128)  Mac=AEAD
DHE-PSK-AES128-GCM-SHA256      TLSv1.2  Kx=DHEPSK  Au=PSK    Enc=AESGCM(128)  Mac=AEAD
AES128-GCM-SHA256              TLSv1.2  Kx=RSA     Au=RSA    Enc=AESGCM(128)  Mac=AEAD
PSK-AES128-GCM-SHA256          TLSv1.2  Kx=PSK     Au=PSK    Enc=AESGCM(128)  Mac=AEAD

Amazon RDS 支援更大的硬碟空間與更多的 IOPS

Amazon RDS 的升級:「Amazon RDS Now Supports Database Storage Size up to 16TB and Faster Scaling for MySQL, MariaDB, Oracle, and PostgreSQL Engines」。

空間上限從 6TB 變成 16TB,而且可以無痛升。另外 IOPS 上限從 30K 變成 40K:

Starting today, you can create Amazon RDS database instances for MySQL, MariaDB, Oracle, and PostgreSQL database engines with up to 16TB of storage. Existing database instances can also be scaled up to 16TB storage without any downtime.

The new storage limit is an increase from 6TB and is supported for Provisioned IOPS and General Purpose SSD storage types. You can also provision up to 40,000 IOPS for Provisioned IOPS storage volumes, an increase from 30,000 IOPS.

不過隔壁的 Amazon Aurora 還是大很多啊 (64TB),而且實際上不用管劃多大,他會自己長大:

Q: What are the minimum and maximum storage limits of an Amazon Aurora database?

The minimum storage is 10GB. Based on your database usage, your Amazon Aurora storage will automatically grow, up to 64 TB, in 10GB increments with no impact to database performance. There is no need to provision storage in advance.

Linode 要推出「Linode Block Storage」了...

從「Linode Block Storage (Fremont beta)」這邊可以看到 Linode 推出 Block Storage 了,是 SSD-based,跟 Amazon EBS 的 gp2 也是 SSD-based 相同。

計價方式,價錢也相同,沒有 I/O fee:

They're affordable - $0.10 per GB (free during the beta) and no usage fees.

目前能從 1GB 開到 1TB:

How big of a Volume can I create?
Between 1 GB and 1024 GB for now. After the beta, the max volume size may be larger.

單台可以掛 8 個:

How many Volumes can I attach to a Linode at the same time?
Up to 8.

然後 2018 開始收費:

The beta is free through 2017. January 1, 2018 the meter starts running.

有了 Block Storage 後有些事情就比較好搭出來了,也不會受限於 local disk 的空間大小。

Backblaze 的資料量

Backblaze 在「Yes, Backblaze Just Ordered 100 Petabytes of Hard Drives」這篇提到他們這一次買了 100PB 的硬碟,不過這應該還好 XD

比較有趣的數字是他們目前存了多少資料:

破 400PB 了... 而且看起來成長速度頗穩定的。

我也用 rclone 把自己的資料往上面備份 (先加密再傳上去),目前連 free tier 都還沒用完 (雖然信用卡卡號掛著)。

Facebook 把 InnoDB 換成 MyRocks 的計畫

在「Migrating a database from InnoDB to MyRocks」這邊講到了 FacebookMySQL 的 InnoDB 換成 MyRocks 的計畫。

Facebook 已經大量導入全 Flash 的環境,於是現在 InnoDB (Compressed) 的情況類似於這樣:

可以看到空間是最大的問題 (Space-bound),而非 CPU 或是 I/O,這在純 Flash 的機器上還蠻有可能的,因為純 Flash 能提供的 I/O capacity 超高,加上 Facebook 把 MySQL 當作後端儲存設備而已,CPU 的使用量可以預期不高...

然後他們估算 MyRocks 可以省下一半的空間,於是有可能變成:

不過對於一般單位來說,這些前提就未必成立了... 但還是可以看到 Mark Callaghan 花不少力氣在調校一般性的效能,希望讓使用者多一點...

Quotient filter

之前有提過「Cuckoo Filter:比 Bloom Filter 多了 Delete」,最近在「A general purpose counting filter: making every bit count」這邊看到 Quotient filter,也是類似 Bloom filter 的資料結構,但想要解決更多問題。

一般的 Bloom filter (BF) 會有這些問題:

  • The inability to delete items
  • Poor scaling out of RAM
  • The inability to resize dynamically
  • The inability to count the number of occurrences of each item, especially with skewed input distributions.

而文章裡提到的 Quotient filter (QF) 就是要解這些問題。另外還提到了 Rank-and-Select-based Quotient filter (RSQF) 以及 Counting Quotient filter (CQF)。雖然多了一些空間需求,但看起來解掉不少問題... (尤其是刪除的能力)

效能上也還不錯,尤其是讀取速度的部份... 不過不知道相對於 Cuckoo filter 差多少。