For example gcc’s libgfortran is missing a libquadmath build dependency. It is natural not to encounter it in real world as libquadmath is usually built along with other small runtimes way before g++ or gfortran is ready.
他的基本想法是把 target 的順序打亂掉,也就是在有指定 --shuffle 時,不一定會照 a -> b -> c 的順序往下遞迴,而可能會是 c -> b -> a 或是其他的順序:
all: a b c
這樣對於抓那些在 -j 平行編譯時會出包的套件也很有幫助,不需要在 -j 開很大的情況下才能重製問題,而是平常就有機會在 CI 環境下被抓出來。
論文裡面的攻擊對象中,第一個是 Microsoft 在 $IKE challenges 內所定義的 $IKEp182 與 $IKEp217,在只用 single core 的情況下,分別在四分鐘與六分鐘就解出來:
Ran on a single core, the appended Magma code breaks the Microsoft SIKE challenges $IKEp182 and $IKEp217 in about 4 minutes and 6 minutes, respectively.
A run on the SIKEp434 parameters, previously believed to meet NIST’s quantum security level 1, took about 62 minutes, again on a single core.
We also ran the code on random instances of SIKEp503 (level 2), SIKEp610 (level 3) and SIKEp751 (level 5), which took about 2h19m, 8h15m and 20h37m, respectively.
It's true that the attack uses mathematics which was published in the 1990s and 2000s. In a sense, the attack doesn't require new mathematics; it could have been noticed at any time. One unexpected facet of the attack is that it uses genus 2 curves to attack elliptic curves (which are genus 1 curves). A connection between the two types of curves is quite unexpected. To give an example illustrating what I mean, for decades people have been trying to attack regular elliptic curve cryptography, including some who have tried using approaches based on genus 2 curves. None of these attempts has succeeded. So for this attempt to succeed in the realm of isogenies is an unexpected development.
In general there is a lot of deep mathematics which has been published in the mathematical literature but which is not well understood by cryptographers. I lump myself into the category of those many researchers who work in cryptography but do not understand as much mathematics as we really should. So sometimes all it takes is someone who recognizes the applicability of existing theoretical math to these new cryptosystems. That is what happened here.
The scheme flooding vulnerability allows an attacker to determine which applications you have installed. In order to generate a 32-bit cross-browser device identifier, a website can test a list of 32 popular applications and check if each is installed or not. On average, the identification process takes a few seconds and works across desktop Windows, Mac and Linux operating systems.
被擋下後再打都會失敗,所以需要一個方式重設 flag,而內建的 Chrome PDF Viewer 剛好可以重設 flag:
The built-in Chrome PDF Viewer is an extension, so every time your browser opens a PDF file it resets the scheme flood protection flag. Opening a PDF file before opening a custom URL makes the exploit functional.
Every time you navigate to an unknown URL scheme, Firefox will show you an internal page with an error. This internal page has a different origin than any other website, so it is impossible to access it because of the Same-origin policy limitation. On the other hand, a known custom URL scheme will be opened as about:blank, whose origin will be accessible from the current website.
You are not authorized to access bug #225769. To see this bug, you must first log in to an account with the appropriate permissions.
另外,雖然 Tor Browser 底層是 Firefox,但因為有改變預設值,所以攻擊者也得換方法:
Tor Browser is based on the Firefox source code, so the Same-origin policy trick was used here as well. But because Tor Browser does not show pop-ups, we used the same-origin policy trick with iframe elements instead.
The demonstration website can leak data at a speed of 1kB/s when running on Chrome 88 on an Intel Skylake CPU. Note that the code will likely require minor modifications to apply to other CPUs or browser versions; however, in our tests the attack was successful on several other processors, including the Apple M1 ARM CPU, without any major changes.
While experimenting, we also developed other PoCs with different properties. Some examples include:
A PoC which can leak 8kB/s of data at a cost of reduced stability using performance.now() as a timer with 5μs precision.
A PoC which leaks data at 60B/s using timers with a precision of 1ms or worse.
比較苦的消息是 Google 已經確認在軟體層沒辦法解乾淨,目前在瀏覽器上只能靠各種 isolation 降低風險,像是將不同站台跑在不同的 process 裡面:
In 2019, the team responsible for V8, Chrome’s JavaScript engine, published a blog post and whitepaper concluding that such attacks can’t be reliably mitigated at the software level. Instead, robust solutions to these issues require security boundaries in applications such as web browsers to be aligned with low-level primitives, for example process-based isolation.
Apple M1 也中這件事情讓人比較意外一點,看起來是當初開發的時候沒評估?目前傳言的 M1x 與 M2 不知道會怎樣...
Checked and the Mastercard one someone posted below doesn't seem to be vulnerable to this. My real card number and a dummy mastercard number with valid prefix and check digit both returned a 200 OK in around 1.01s. A random 16digit number without valid check digit returned 400 Bad Request in about 800ms. Decided to check that one since they have a completely useless machine-readable catchpa.
For Visa it was 835ms for valid, 762ms for dummy, prefix and check digit appears to be checked client side.
This was originally meant to be a side project that we'd work on every once in a while, but with all of the extra free time with the pandemic we each ended up putting a few hundred hours into it.
There were a total of 55 vulnerabilities discovered with 11 critical severity, 29 high severity, 13 medium severity, and 2 low severity reports. These severities were assessed by us for summarization purposes and are dependent on a mix of CVSS and our understanding of the business related impact.