DynamoDB Autoscaling 的各種眉眉角角...

AdRollDynamoDB Autoscaling 的踩雷記錄,裡面有些資訊如果不是跳下去玩應該不會注意到 (魔鬼藏在細節裡的感覺):「Managing DynamoDB Autoscaling with Lambda and Cloudwatch」。

第一個提到的問題是 autoscaling 的觀察對象:

Ideally, the table should scale based on the number of requests that we are making , not the number of requests that are successful.

另外一個是 autoscaling 遇到完全不用的情況下不會 scale down,看起來是某種保護機制。但這使得平常只有拿來讀取的表格在跑完 batch job 後得自己處理 write scale down 問題:

Additionally, at the time of implementing this algorithm, the DynamoDB capacity could not be brought down automatically if the consumption was exactly zero, which can happen if you write to your table in batch instead of realtime, for example.

This meant that, when enabling autoscaling, tables that were read in realtime, but written to in batch, still needed manual intervention to bring the write capacity down after our jobs were done writing.

另外一個問題是 scale down 是有次數限制的:

Another interesting point that might bite users is that capacity decreases are an expensive operation for AWS, so they’re limited.

The number of decreases cited in the documentation can be achieved under very special conditions, since you need to have 4 decreases in the first hour of the day plus one for each of the remaining hours, for a total of 4 (first hour) + 23 (1 hourly) = 27.

後面就是自己研究什麼 algorithm 可以調整的更細,然後用 lambda 重寫... 最後省下 30% 的成本:

Here is where we detected our costs for our batch tables dropping to around 30% of the initial cost.

AdRoll 的規模應該是不小,所以為了省 30% 可以花不少力氣在上面...

貴不少的 DynamoDB On-Demand...

DynamoDB 用起來比較困難的部份就是規劃 R/W capacity,所以 AWS 就推出了 DynamoDB On-Demand,直接計算用多少而不用規劃 R/W capacity:「Amazon DynamoDB On-Demand – No Capacity Planning and Pay-Per-Request Pricing」。

先講一下歷史,在 2014 的時候 Jeff Barr 就有在「Auto Scale DynamoDB With Dynamic DynamoDB」這邊提到開一台 t1.micro 在上面跑程式實做 DynamoDB 的 auto scaling。

另外在 2017 年的時候 AWS 自己推出了同樣的功能,就不需要開機器了,交給 AWS 的服務處理就可以了:「New – Auto Scaling for Amazon DynamoDB」。


目前想到唯一會炸掉的情境應該是突然被熱門媒體報導,而導致大量的 guest session 衝進來,而且架構上又沒有針對 guest session 用 cache 擋住 (Amazon DynamoDB Accelerator 也是個選項),導致壓力就全部到後端的 DynamoDB,而 auto scaling 機制需要時間看到量才會調整,在這段時間就有可能短時間倒站。

回來看這次的 On-Demand 提出來的價錢。以 us-east-1 的價錢來看:

Write request units$1.25 per million write request units
Read request units$0.25 per million read request units

而本來要自己規劃 R/W capacity 的價錢是 (這邊是 hourly):

Write capacity unit (WCU)$0.00065 per WCU
Read capacity unit (RCU)$0.00013 per RCU

由於不管是 On-Demand 還是本來的規劃,Read 價錢都是 Write 的 1/5,所以只要看 Write 一樣可以知道差距。

接下來把 On-Demand 的價錢換算成 3600 個 request units 就可以比較單價,是 $0.0045 (Write),大約是本來版本 6.92 倍的費用...

而且對於已經有規模的應用,這邊還沒算 Reserved Capacity 會有折扣的部份?

這個定價策略讓我想到 AWS Fargate 的情況... 如果你可以接受這個價錢,你可以平常就開五倍的 R/W capacity 在上面啊 XDDD

EC2 推出用 machine learning 協助 auto scaling 控制的功能...

AWSEC2 上推出了用 machine learning 協助 auto scaling 控制的功能:「New – Predictive Scaling for EC2, Powered by Machine Learning」。

最少給他一天的資料 (然後他會每天重新分析一次),接著會預測接下來的 48 小時的使用行為:

The model needs at least one day’s of historical data to start making predictions; it is re-evaluated every 24 hours to create a forecast for the next 48 hours.

所以是個學 pattern 然後預先開好機制等著的概念...

透過預測增加服務穩定性的概念... 如果本來就跑得好好的 (也就是靠 resource-based metric 觸發機器數量的方式跑得很好),就未必需要考慮這個方案了。


Predictive scaling is available now and you can starting using it today in the US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Ireland), and Asia Pacific (Singapore) Regions.

ALB 支援 Slow Start 了

這個功能在 ELB Classic 年代時有跟 AWS 提過,到 ALB 支援了 (總算...):「Application Load Balancer Announces Slow Start Support for its Load Balancing Algorithm」。

Application Load Balancers now support a slow start mode that allows you to add new targets without overwhelming them with a flood of requests. With the slow start mode, targets warm up before accepting their fair share of requests based on a ramp-up period that you specify.

然後時間可以設定,從 30 秒到 15 分鐘:

Slow start mode can be enabled by target group and can be configured for a duration of 30 seconds to 15 minutes. The load balancer linearly increases the number of requests sent to a new target in a target group up to its fair share during the slow start ramp-up window.

就之前的經驗來說,這在跑 PHP 的時候會很需要這個功能 (之前是在 F5 的設備上設定)。其他的語言因為性質不太一樣,可能不會這麼吃這個功能。

主要是因為 PHP 是在 request 進來時 compile 並且 cache。所以在機器剛起來時,儘量將 CPU 留給 opcache,把常用的頁面 compile 完並且放進 cache,而不是讓大量的連線灌進來,這樣對使用體驗不會太好... (要避免 CPU 吃滿 100% 很久,造成每個連線都很慢才跑完)

AWS 推出 Slow Start 後對 auto scaling 時的順暢度會好不少...

Netflix 在 Time Series Data Storage 上的努力...

在「Scaling Time Series Data Storage — Part I」這篇看到 Netflix 在 Time Series Data Storage 上所做的努力...

因為應用在寫多讀少的場景,所以選擇使用 Cassandra,遇到瓶頸後把常寫入的與不太會改變的拆開儲存,並且用不同方式最佳化。包括了 cache 與 compression 都拿出來用了...

不知道他們內部有沒有評估 ScyllaDB 的想法...

Fortnite 看起來沒上 Auto Scaling?(或是沒正確設好?)

Fortnite 遊戲的伺服器放在 AWS 上,看起來這波 Meltdown 的安全更新 (KPTI) 造成非常大的 overhead:


We wanted to provide a bit more context for the most recent login issues and service instability. All of our cloud services are affected by updates required to mitigate the Meltdown vulnerability. We heavily rely on cloud services to run our back-end and we may experience further service issues due to ongoing updates.

最有可能的是把 AWS 當作一般的 VPS 在用,另外一種可能是有部份內部服務沒有 scale,造成上了 KPTI 後 overhead 增加,就卡住了...

Amazon Aurora 的 Serverless 與 Multi-master

Amazon Aurora 推出了兩包玩意,第一包是 Serverless,讓需要人介入的情況更少:「In The Works – Amazon Aurora Serverless」。

在 Serverless 的第一個重點是支援以秒計費:

Today we are launching a preview (sign up now) of Amazon Aurora Serverless. Designed for workloads that are highly variable and subject to rapid change, this new configuration allows you to pay for the database resources you use, on a second-by-second basis.

然後是極為快速的 auto-scaling:

The endpoint is a simple proxy that routes your queries to a rapidly scaled fleet of database resources. This allows your connections to remain intact even as scaling operations take place behind the scenes. Scaling is rapid, with new resources coming online within 5 seconds

這兩個組合起來,讓使用端可以除了在 Amazon EC2 上可以快速 scale 外,後端的資料庫也能 scale 了...

第二個是 Multi-master 架構:「Sign Up for the Preview of Amazon Aurora Multi-Master」。

Amazon Aurora Multi-Master allows you to create multiple read/write master instances across multiple Availability Zones. This enables applications to read and write data to multiple database instances in a cluster, just as you can read across Read Replicas today.

(話說我一直都誤以為 Aurora 是 R/W master...)

Anyway,這個功能不知道怎麼疊上去的... 不笑得會不會有嚴重的 distributed lock issue,反而推薦大家平常都寫到同一台 (像是 PXC 就會這樣)。

官方支援 DynamoDB 的 Auto Scaling 了

DynamoDB 可以透過 console 或是 API 調整 R/W 的 capacity,但一直都沒有全自動的機制這件事情為人詬病頗久。

以前都是自己用 AWS Lambda 或是其他架構判斷調整,現在官方直接提供了:「New – Auto Scaling for Amazon DynamoDB」。



標題取自 Percona 的「Better Than Linear Scaling」。

其實是因為機器數量增加,而且有妥善規劃,使得 cache 的 hit rate 上升而讓整體效率變好 (也就是 1 + 1 > 2)。

不只在 database 上會發生,在其他系統上其實會有類似的情況,剛好看到覺得很懷念 XD

Auto Scaling 可以拉 EC2 Spot Instance 進來用了

Update:auto scaling 在 2012 就支援 spot instance 了:「EC2 Spot Instance Updates – Auto Scaling and CloudFormation Integration, New Sample App」,我一直有 auto scaling 不支援的印象... 這次是支援 EC2 Spot Fleets (i.e. 以 capacity 為主的架構,將兩台 c4.4xlarge 與一台 c4.8xlarge 當作是有相同 capacity 來喊價)。

AWSAuto Scaling 宣佈支援 Spot Instance 了:「New – Auto Scaling for EC2 Spot Fleets」。

雖然文章主要都是以 worker 之類的應用來做,但可以看到還是有說 web service:

Web Service – Scale web services based on measured response time and average requests per second.

我猜官方還是不建議這樣用,所以整篇文章都還是以 worker 類為主。應該是因為 web service 直接對使用者,用 Auto Scaling 不一定開的起來,反而有可能會爆炸 XD