Amazon SES 總算支援 2048 bits RSA key 了

Amazon SES 總算是支援 2048 bits RSA key 了:「Amazon SES now supports 2048-bit DKIM keys」。

然後講一些幹話... 隔壁微軟早在 2019 年就支援 2048 bits RSA key 了:

Until now, Amazon SES supported a DKIM key length of 1024-bit, which is the current industry standard.

另外用 ECC 演算法的一直都沒進 standard,像是已經先 book 了 RFC 8463 位置的 Ed25519,在 draft 狀態放好久了:「A New Cryptographic Signature Method for DomainKeys Identified Mail (DKIM)」,還有用 ECDSA 的「Defining Elliptic Curve Cryptography Algorithms for use with DKIM」也是放著,不知道是卡到什麼東西,可能是專利?

還原被碼掉的 PEM 資訊 (SSH RSA key)

在「Recovering a full PEM Private Key when half of it is redacted」這邊看到的,起因是 _SaxX_ 幫客戶做滲透測試時找到客戶公開在網路上的 SSH key,然後他就碼掉一部分貼出來:

原圖是這樣,接下來就開始被還原 XD

首先是 OCR 的過程,被稱為是整個還原過程最難的一部分 (哭爸啊):

Ironically, this was the hardest part of the challenge. It took the longest time of all the steps and was the easiest to make errors in.

接下來就是解讀 PEM 檔的格式,可以藉此得到裡面的參數。

然後是套公式,窮舉運算裡面的值,可以看到迴圈 kp 只算了 365537,就推算出可能的 p

e = 65537
q = 0xc28871e8714090e0a33327b88acc57eef2eb6033ac6bc44f31baeac33cbc026c3e8bbe9e0f77c8dbc0b4bfed0273f6621d24bc1effc0b6c06427b89758f6d433a02bf996d42e1e2750738ac3b85b4a187a3bcb4124d62296cb0eecaa5b70fb84a12254b0973797a1e53829ec59f22238eab77b211664fc2fa686893dda43756c895953e573fd52aa9bb41d22306135c81174a001b32f5407d4f72d80c5de2850541de5d55c19c1f817eea994dfa534b6d941ba204b306225a9e06ddb048f4e34507540fb3f03efeb30bdd076cfa22b135c9037c9e18fe4fa70cf61cea8c002e9c85e53c1eaac935042d00697270f05b8a7976846963c933dadd527227e6c45e1
dp = 0x878f7c1b9b19b1693c1371305f194cd08c770c8f5976b2d8e3cf769a1117080d6e90a10aef9da6eb5b34219b71f4c8e5cde3a9d36945ac507ee6dfe4c146e7458ef83fa065e3036e5fbf15597e97a7ba93a31124d97c177e68e38adc4c45858417abf8034745d6b3782a195e6dd3cf0be14f5d97247900e9aac3b2b5a89f33a3f8f71d27d670401ca185eb9c88644b7985e4d98a7da37bfffdb737e54b6e0de2004d0c8c425fb16380431d7de40540c02346c98991b748ebbc8aac73dd58de6f7ff00a302f4047020b6cd9098f6ba686994f5e043e7181edfc552e18bce42b3a42b63f7ccb7729b74e76a040055d397278cb939240f236d0a2a79757ba7a9f09

for kp in range(3, e):
    p_mul = dp * e - 1
    if p_mul % kp == 0:
        p = (p_mul // kp) + 1
        if isPrime(p):
            print(f"Possible p: {p}")

後面就是跑驗證確認,就被打出來了...

Dehydrated 取得憑證的預設演算法改成 secp384r1

這兩天弄 dehydrated,結果發現 v0.7.0 取得憑證的預設演算法改成 ECCsecp384r1 了:

Using EC secp384r1 as default certificate type

這會導致很多「稍微舊一點」的 client 失效 (瀏覽器與 library),不知道為什麼要預設... 目前避開的方法是強制在 /etc/dehydrated/config 內設定使用 rsa

KEY_ALGO=rsa

剛剛把公司一堆機器改上去,然後把自己的 server 也加一加...

OpenSSH 8.4 預設停用 ssh-rsa

前幾天 OpenSSH 8.4 釋出了:「Announce: OpenSSH 8.4 released」。

比較重要的改變是 ssh-rsa 預設變成停用,因為是使用 SHA-1 演算法的關係:

It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm by default in a near-future release.

官方給了三個方案:

  • The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them.
  • The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5.
  • The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7.

掃了一下 ~/.ssh/known_hosts,看起來目前大多都是 ssh-ed25519 了,還有少數還是 ssh-rsa

翻了一下 Ubuntu 這邊的版本,16.04 是 7.2p2,看起來目前有支援的版本都可以用這三個。

官方有提到可以在 command 上強制關閉 ssh-rsa 測試的方法:

ssh -oHostKeyAlgorithms=-ssh-rsa user@host

現在看起來比較麻煩的是 Dropbear 的部份,我自己之前是有包 PPA 來用 (2019.78),但看起來還是不夠新支援 ssh-ed25519 (要今年六月的 2020.79 才支援),所以也許要找時間來把 PPA 更新到 2020.80...

另外一種方法是走 ecdsa-sha2-nistp{256,384,521} 這些演算法,不過從名字就可以知道裡面演算法的由來,卡個 NIST 在那邊看起來就不太舒服,但還是寫一下方法好了:

先用 dropbearkey 產生對應的 ecdsa host key:

sudo dropbearkey -t ecdsa -f /etc/dropbear/dropbear_ecdsa_host_key -s 256

再來在 /etc/default/dropbear 裡面把 DROPBEAR_EXTRA_ARGS 加上對應的 ecdsa host key 資訊,這邊直接用 -r 是因為他可以重複指定,不會影響到其他的 host key 設定:

# any additional arguments for Dropbear
DROPBEAR_EXTRA_ARGS="-r /etc/dropbear/dropbear_ecdsa_host_key"

然後重跑 dropbear 就可以了。

另外有興趣的人可以用 ssh -Q key 看 openssh client 支援的演算法。

Let's Encrypt 生了新的 Root 與 Intermediate Certificate

Let's Encrypt 弄了新的 Root Certificate 與 Intermediate Certificate:「Let's Encrypt's New Root and Intermediate Certificates」。

一方面是本來的 Intermediate Certificate 也快要要過期了,另外一方面是要利用 ECDSA 降低傳輸時的頻寬成本:

On Thursday, September 3rd, 2020, Let’s Encrypt issued six new certificates: one root, four intermediates, and one cross-sign. These new certificates are part of our larger plan to improve privacy on the web, by making ECDSA end-entity certificates widely available, and by making certificates smaller.

本來有 Let's Encrypt Authority {X1,X2,X3,X4} 四組 Intermediate Certificate,都是 RSA 2048 bits。

其中 X1 與 X2 差不多都到期了 (cross-signed 的已經過了,自家 ISRG Root X1 簽的剩不到一個月),不過這兩組已經沒在用了,這次就不管他了。

而 X3 與 X4 這兩組則是明年到期,會產生出新的 Intermediate Certificate,會叫做 R3 與 R4,跟之前一樣會被自家 ISRG Root X1 簽,以及 IdenTrust DST Root CA X3 簽:

For starters, we’ve issued two new 2048-bit RSA intermediates which we’re calling R3 and R4. These are both issued by ISRG Root X1, and have 5-year lifetimes. They will also be cross-signed by IdenTrust. They’re basically direct replacements for our current X3 and X4, which are expiring in a year. We expect to switch our primary issuance pipeline to use R3 later this year, which won’t have any real effect on issuance or renewal.

然後是本次的重頭戲,會弄出一個新的 Root Certificate,叫做 ISRG Root X2,以及兩個 Intermediate Certificate,叫做 E1 與 E2:

The other new certificates are more interesting. First up, we have the new ISRG Root X2, which has an ECDSA P-384 key instead of RSA, and is valid until 2040. Issued from that, we have two new intermediates, E1 and E2, which are both also ECDSA and are valid for 5 years.

主要的目的就是降低 TLS 連線時的 bandwidth,這次的設計預期可以降低將近 400 bytes:

While a 2048-bit RSA public key is about 256 bytes long, an ECDSA P-384 public key is only about 48 bytes. Similarly, the RSA signature will be another 256 bytes, while the ECDSA signature will only be 96 bytes. Factoring in some additional overhead, that’s a savings of nearly 400 bytes per certificate. Multiply that by how many certificates are in your chain, and how many connections you get in a day, and the bandwidth savings add up fast.

另外一個特別的修改是把名字改短 (把「Let's Encrypt Authority」拿掉),也是為了省傳輸的成本:

As an aside: since we’re concerned about certificate sizes, we’ve also taken a few other measures to save bytes in our new certificates. We’ve shortened their Subject Common Names from “Let’s Encrypt Authority X3” to just “R3”, relying on the previously-redundant Organization Name field to supply the words “Let’s Encrypt”. We’ve shortened their Authority Information Access Issuer and CRL Distribution Point URLs, and we’ve dropped their CPS and OCSP urls entirely. All of this adds up to another approximately 120 bytes of savings without making any substantive change to the useful information in the certificate.

這個部份讓我想到之前寫的「省頻寬的方法:終極版本...」這篇,裡面提到 AWS 自家的 SSL Certificate 太胖,改用 DigiCert 的反而可以省下不少錢 XDDD

另外也提到了這次 cross-sign 的部份是對 ECDSA Root Certificate 簽 (ISRG Root X2),而不是對 ECDSA Intermediate Certificate 簽 (E1 與 E2),主因是不希望多一次切換的轉移期:

In the end, we decided that providing the option of all-ECDSA chains was more important, and so opted to go with the first option, and cross-sign the ISRG Root X2 itself.

這算是蠻重要的進展,看起來各家 client 最近應該都會推出新版支援。

NIST 對密碼學演算法建議的長度 (2020 版)

在「Comparing SSH Encryption Algorithms - RSA, DSA, ECDSA, or EdDSA?」這邊一路翻到「Keylength - NIST Report on Cryptographic Key Length and Cryptoperiod (2020)」這篇,裡面引用的是 NIST 的「NIST Special Publication 800-57 Part 1 Revision 5」。

在 NIST 的文件裡面,不同的演算法散落在不同地方,Keylength 整理起來後比較方便看。

想要特別拉出來講是因為看到 RSA 2048 bits 被放到 112 這個等級 (Security Strength),我一直以為是 128,不過查了一下發現好像以前是就 112 了...

蘋果的導流方案:Apple Edge Cache

Hacker News Daily 上看到蘋果的「Apple Edge Cache」這個服務,看起來就是個自家的 CDN 方案。

網路要求最低要能夠 peak 到 25Gbps 不算低,不過以蘋果的用量來說應該不算是高估:

Minimum 25 Gb/s peak traffic across all Apple traffic.

各家 ISP 應該都會考慮,畢竟 iPhoneiPad 的數量可不是假的,所以目前在台灣測到的點都是台灣的機房 (看 ping latency)...

另外一個有趣的事情是 SSL 的部份,從 SSL Labs 的資料可以看到一些有趣的東西:「SSL Report: cache.edge.apple (17.253.119.201)」。

一個是蘋果跟 GeoTrust 買了 Intermediate CA 再簽自己的 AEC 服務,另外一個是同時有 RSA 2048 bits 與 EC 256 bits 的 key,然後是支援 TLS 1.3 了。

跟其他內容業者的玩法類似,像是 NetflixOpen Connect

RSA-240 (十進位 240 位數) 成功分解

在「RSA-240 Factored」這邊看到的,RSA-240 前幾天被解開了:

RSA-240 = 124620366781718784065835044608106590434820374651678805754818788883289666801188210855036039570272508747509864768438458621054865537970253930571891217684318286362846948405301614416430468066875699415246993185704183030512549594371372159029236099 = 509435952285839914555051023580843714132648382024111473186660296521821206469746700620316443478873837606252372049619334517 * 244624208838318150567813139024002896653802092578931401452041221336558477095178155258218897735030590669041302045908071447

有效長度是 795 bits,相較於十年前解出來的 RSA-768 (768 bits) 又多了「一些」。看了一下,算法上沒有太多突破,主要是硬體的發展與軟體的最佳化有進展...

iOS 13 與 macOS 10.15 對憑證的限制

Slack 上看到同事丟出來的,關於之後要推出的 iOS 13 與 macOS 10.15 會對憑證限制的項目:「Requirements for trusted certificates in iOS 13 and macOS 10.15」。

主要是把不安全的演算法淘汰掉 (RSA 小於 2048 bits,以及 SHA-1 類的 hash algorithm),這兩個部份相關的新聞應該不少,沒有什麼太大問題:

TLS server certificates and issuing CAs using RSA keys must use key sizes greater than or equal to 2048 bits. Certificates using RSA key sizes smaller than 2048 bits are no longer trusted for TLS.

TLS server certificates and issuing CAs must use a hash algorithm from the SHA-2 family in the signature algorithm. SHA-1 signed certificates are no longer trusted for TLS.

然後是要求憑證使用 SAN (Subject Alternative Name),舊的標準 CN (CommonName) 將不會再被信任。

如果是公開簽發的憑證應該都沒問題 (像是 Let's Encrypt,或是花錢買的那些),主要的問題應該會出現在自己建立的憑證,網路上蠻多舊資料還是產生 CN...

TLS server certificates must present the DNS name of the server in the Subject Alternative Name extension of the certificate. DNS names in the CommonName of a certificate are no longer trusted.

另外是 2019/7/1 之後發出的憑證,有額外兩個規範要注意,第一個是強制要透過 EKU 指定 id-kp-serverAuth,這是出自 RFC 5280

   id-kp-serverAuth             OBJECT IDENTIFIER ::= { id-kp 1 }
   -- TLS WWW server authentication
   -- Key usage bits that may be consistent: digitalSignature,
   -- keyEncipherment or keyAgreement

TLS server certificates must contain an ExtendedKeyUsage (EKU) extension containing the id-kp-serverAuth OID.

再來是時間的限制,接下來的憑證最長只認得 825 天 (大約 27 個月多一些),以前都惡搞 -days 3650,現在得兩年簽一次了:

TLS server certificates must have a validity period of 825 days or fewer (as expressed in the NotBefore and NotAfter fields of the certificate).

整體看起來主要是影響自己簽的部份...

實際比較 Linode 的 Dedicated 主機與 AWS 的 c5.*

先前有提到 Linode 出了 Dedicated 主機:「Linode 推出 Dedicated CPU Instances」,現在找機會測試看看,拿了 Linode 的 Dedicated (4GB) 與 AWSc5.large 比較,同樣都是 2 vCPU 與 4GB RAM。

這邊用了 n-st/nenchOpenSSL 的 speed (包括了 aes、md5、rsa、sha1 與 sha256) 測試,我把結果都貼到這邊:「Linode (Dedicated 4GB) v.s. AWS (c5.large)」。

可以看到在 CPU 方面主要的差異是 Linode 用的是 AMD,而 AWS 用的是 Intel,所以就會有蠻多不同的數字表現...

如果仔細看 OpenSSL 的測試數據,可以看到不同演算法的差異還蠻大的,馬上可以想到的應該是硬體加速方式與 cache 架構差異造成的:

  • 在 cipher 類的測試我只測了 AES (目前的主流),小的 block (16/64/256 bytes) 時 AMD 會輸一些,但大的 block (1024/8192/16384 bytes) 反而會贏不少。
  • 在 hash 類的測試中,跑 MD5 時 Linode 則是輸一些,但 SHA1 反而是贏一些,然後 SHA256 時效能好到爆炸贏了一倍 XDDD
  • 在 public key 類的測試我測了 RSA,則是 Linode 輸的蠻慘的...

如果考慮到價位大約只有 AWS 的一半,應該是還不錯...