Home » Posts tagged "rate"

用 4.5+ 的 Linux Kernel 限制 I/O 速度

在「Using cgroups to limit I/O」這邊看到作者試著用 cgroups 限制 I/O 速度。

作者前面花了不少篇幅解釋 cgroups v1 無法正確限制 I/O 速度,後面就在講 cgroups v2 怎麼做:

So, in order to limit I/O when this I/O may hit the writeback kernel cache, we need to use both memory and io controllers in the cgroups v2!

這會需要 4.5+ 的 kernel,可能會需要手動更新,或是直接使用比較新的 distribution:

Since kernel 4.5, the cgroups v2 implementation was marked non-experimental.

然後照抄就可以了 (不過這邊的指定都需要 root,作者用 $ 表示 shell 有點怪):

# mount -t cgroup2 nodev /cgroup2
# mkdir /cgroup2/cg2
# echo "+io" > /cgroup2/cgroup.subtree_control
# echo "8:0 wbps=1048576" > io.max
# echo $$ > /cgroup2/cg2/cgroup.procs

然後就可以跑 dd 測試速度了,同時間也可以跑 iostat 看。

Amazon 的多變數最佳化

在「An efficient bandit algorithm for real-time multivariate optimization」這邊提到了 Amazon 不是走傳統的 A/B testing,而是同時進行多變數的最佳化:

Consider the problem of trying to find a near-optimal version of a promotional message such as this one, which has 5 variable parts and 48 different combinations in total.

在這樣的測試數量下,作者預估需要 66 天才能夠得到有效的結果,而這也表示當變數更多的時候問題就更大了:

Based on the Amazon success rate and traffic size, the authors calculated it would take 66 days to conduct a 48 treatment randomized experiment. Often this isn’t practical.

也就是開頭提到的,如何一個禮拜就提昇 21% conversion rate:

Aka, “How Amazon improved conversion by 21% in a single week!”

作者也提到了這個方法其實打臉了他先前提到的另外一篇論文,在 2014 年提出測試應該要盡可能簡單 XDDD:

Yesterday we saw the hard-won wisdom on display in ‘seven myths‘ recommending that experiments be kept simple and only test one thing at a time, otherwise interpreting the results can get really complicated.

只能說狀況愈來愈複雜,導致需要新方法解決問題。而且這些電商會遇到在測試時不同的 factor 之間有可能會有相依性 (也就是說這些 factor 不是 i.i.d.),你用本來的方式反而會測不出來。

對於按讚數排名的方法

前幾天看到一篇 2009 年的老文章,在討論使用者透過「喜歡」以及「不喜歡」投票後,要怎麼排名的方法:「How Not To Sort By Average Rating」。

基本的概念是當使用者投票數愈多時就會愈準確,透過統計方法可以算一個信賴區間,再用區間的下限來排... 但沒想到公式「看起來」這麼複雜 XDDD

Score = Lower bound of Wilson score confidence interval for a Bernoulli parameter

但實際的運算其實沒那麼複雜,像是 Ruby 的程式碼可以看出大多都是系統內的運算就可以算出來。其中的 z 在大多數的情況下是常數。

require 'statistics2'

def ci_lower_bound(pos, n, confidence)
    if n == 0
        return 0
    end
    z = Statistics2.pnormaldist(1-(1-confidence)/2)
    phat = 1.0*pos/n
    (phat + z*z/(2*n) - z * Math.sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n)
end

The z-score in this function never changes, so if you don't have a statistics package handy or if performance is an issue you can always hard-code a value here for z. (Use 1.96 for a confidence level of 0.95.)

作者後來在 2012 年與 2016 年也分別給了 SQL 以及 Excel 的範例程式碼出來,裡面 hard-code 了 95% 信賴區間的部份:

SELECT widget_id, ((positive + 1.9208) / (positive + negative) - 
                   1.96 * SQRT((positive * negative) / (positive + negative) + 0.9604) / 
                          (positive + negative)) / (1 + 3.8416 / (positive + negative)) 
       AS ci_lower_bound FROM widgets WHERE positive + negative > 0 
       ORDER BY ci_lower_bound DESC;
=IFERROR((([@[Up Votes]] + 1.9208) / ([@[Up Votes]] + [@[Down Votes]]) - 1.96 * 
    SQRT(([@[Up Votes]] *  [@[Down Votes]]) / ([@[Up Votes]] +  [@[Down Votes]]) + 0.9604) / 
    ([@[Up Votes]] +  [@[Down Votes]])) / (1 + 3.8416 / ([@[Up Votes]] +  [@[Down Votes]])),0)

而更多的說明在維基百科的「Binomial proportion confidence interval」可以翻到,裡面也有其他的方法可以用。

Reddit 在處理 Page View 的方式

Reddit 說明了他們如何處理 pageview:「View Counting at Reddit」。

以 Reddit 的規模有提到兩個重點,第一個在善用 RedisHyperLogLog 這個資料結構,當量大的時候其實可以允許有微小的誤差:

The amount of memory varies per implementation, but in the case of this implementation, we could count over 1 million IDs using just 12 kilobytes of space, which would be 0.15% of the original space usage!

維基百科上有說明當資料量在 109 這個等級時,用 1.5KB 的記憶體只有 2% 的誤差值:

The HyperLogLog algorithm is able to estimate cardinalities of > 109 with a typical error rate of 2%, using 1.5 kB of memory.

第二個則是寫入允許短時間的誤差 (pageview 不會即時反應),透過批次處理降低對 Cassandra cluster 的負荷:

Writes to Cassandra are batched in 10-second groups per post in order to avoid overloading the cluster.

可以注意到把 Redis 當作 cache 層而非 storage 層。

主要原因應該跟 Redis 定位是 data structure server 而非 data structure storage 有關 (可以從對 Durability 的作法看出來),而使用 Cassandra 存 key-value 非常容易 scale,但讀取很慢。剛好兩個相輔相成。

GitHub Apps (前身 GitHub Integrations) 的 Rate Limiting 變得更彈性

GitHub 宣佈了把 GitHub Integrations 改名為 GitHub Apps,另外 Rate Limiting 變得更彈性:「GitHub Apps (formerly Integrations) General Release」。

All GitHub Apps start with a rate limit of 5000 requests per hour. To facilitate growth we have added a dynamic rate limit for installations: organization installations with more than 20 users receive another 50 requests per hour for each user. Installations that have more than 20 repositories receive another 50 requests per hour for each repository.

所以對於超過 20 個使用者以及超過 20 個 repository 的 organization 都會增加 Rate Limiting。每個單位增加 50 requests/hour 不算太多,不過想一下好像也不少... (尤其對大一點的團體來說)

超越線性成長的資料庫架構

標題取自 Percona 的「Better Than Linear Scaling」。

其實是因為機器數量增加,而且有妥善規劃,使得 cache 的 hit rate 上升而讓整體效率變好 (也就是 1 + 1 > 2)。

不只在 database 上會發生,在其他系統上其實會有類似的情況,剛好看到覺得很懷念 XD

Stripe 對於控制 API 使用量的作法

在「Scaling your API with rate limiters」這篇 StripePaul Tarjan 提到了四種如何保護 API 的作法。

前兩種都是 rate limit。第一種是最標準的「你一分鐘可以用幾次」的方式,這是最容易理解的方式。第二種是「你同時間可以用幾個 API request」,這通常會用在大量消耗資源的 API 上,避免短時間內被打爆。

第三種是拉到整體來看,把 API 分成重要與不重要的,然後直接保留確保重要的 API 有一定的 capacity 可以用:

We always reserve a fraction of our infrastructure for critical requests. If our reservation number is 20%, then any non-critical request over their 80% allocation would be rejected with status code 503.

第四種方式是當過載時的自動化處理,平常就把各種工作排優先順序,當超量的時候自動先將低優先權的拿掉:

Only 100 requests were rejected this month from this rate limiter, but in the past it’s done a lot to help us recover more quickly when we have had load problems. This load shedder limits the impact of incidents that are already happening and provides damage control, while the first three are more preventative.

不過還是有點怪,Stripe 應該是全部都建在 AWS 上面 (AWS Case Study: Stripe),跟 auto scaling 的配合好像都沒提到?

歸類的方式還蠻有條理的,可以學這個方法來規劃...

Google Chrome 55 的記憶體改善

前陣子 Google Chrome 55 出了,其中最讓人期待的是對記憶體的改善,有人整理了數據:「Chrome 55 uses ~30% less memory than Chrome 54」。

依照作者拿 weather.comreddit.com 測試,前者的記憶體省了 26%,後者省了 30%,都相當明顯。我自己在升到 55 後有明顯感覺到改善,尤其是重開 Chrome 時重新讀取頁面的速度也快了不少...

這些改善主要是出自於「Fall cleaning: Optimizing V8 memory consumption」這邊提到對 V8 engine 的改寫,我感覺到速度變快應該是記憶體用量降低使得 CPU cache rate 提高的關係吧...

Archives