PostgreSQL 13 的 B-Tree Deduplication

Hacker News 上看到「Lessons Learned from Running Postgres 13: Better Performance, Monitoring & More」這篇文章,其中有提到 PostgreSQL 13 因為 B-Tree 支援 deduplication,所以有機會縮小不少空間。

搜了一下源頭是「Add deduplication to nbtree.」這個 git commit,而 PostgreSQL 官方的說明則是在「63.4.2. Deduplication」這邊可以看到。

另外值得一提的是,這個功能在 CREATE INDEX 這頁可以看到在 PostgreSQL 13 預設會打開使用。

依照說明,看起來本來的機制是當 B-Tree index 內的 key 相同時,像是 key1 = key2 = key3 這樣,他會存 {key1, ptr1}{key2, ptr2}{key3, ptr3}

在新的架構下開啟 deduplication 後就會變成類似 {key1, [ptr1, ptr2, ptr3]} 這樣的結構。可以看出來在 key 重複的資料很多的時候,可以省下大量空間 (以術語來說的話,就是 cardinality 偏低的時候)。

這樣看起來可以降低不少壓力...

Splitgraph 把公開資料轉成 PostgreSQL 服務

看到「Port 5432 is open: introducing the Splitgraph Data Delivery Network」這個,Splitgraph 把 public dataset 轉成 PostgreSQL 服務:

We launch the Splitgraph Data Delivery Network: a single endpoint that lets any PostgreSQL application, client or BI tool to connect and query over 40,000 public datasets hosted or proxied by Splitgraph.

這樣看起來可以讓很多 BI 工具直接接進來用,如果再支援 ODBC 或是 JDBC 的話通用性就更好了,但目前沒看到定價策略 (感覺應該頗好賣的?),應該是還在開發階段?

丟給公司內 data team 看一下好了,如果資料的品質沒問題的話,感覺會是個好用的服務...

PostgreSQL 的 SERIALIZABLE 的 bug

這是 Jespen 第一次測試 PostgreSQL,就順利找出可重製的 bug 了:「PostgreSQL 12.3」。

第一個 bug 是 REPEATABLE READ 下的問題,不過因為 SQL-92 定義不夠嚴謹的關係,其實算不算是 bug 有討論的空間,這點作者 Kyle Kingsbury 在文章裡也有提出來:

Whether PostgreSQL’s repeatable-read behavior is correct therefore depends on one’s interpretation of the standard. It is surprising that a database based on snapshot isolation would reject the strict interpretation chosen by the seminal paper on SI, but on reflection, the behavior is defensible.

另外一個就比較沒問題了,是 SERIALIZABLE 下的 bug,在 SQL-92 下對 SERIALIZABLE 的定義是這樣:

The execution of concurrent SQL-transactions at isolation level SERIALIZABLE is guaranteed to be serializable. A serializable execution is defined to be an execution of the operations of concurrently executing SQL-transactions that produces the same effect as some serial execution of those same SQL-transactions. A serial execution is one in which each SQL-transaction executes to completion before the next SQL-transaction begins.

也就是說,在 SERIALIZABLE 下一堆 transaction 的執行結果,你至少可以找到一組排序,使得這些 transaction 的結果是等價的。

而 Jespen 順利找出了一組 transaction (兩個 transaction),在 SERIALIZABLE 下都成功 (但不應該成功):

對於這兩個 transaction,不論是上面這條先執行,還是下面這條先執行,都不存在等價的結果,所以不符合 SERIALIZABLE 的要求。

另外也找到一個包括三個 transaction 的情況:

把 transaction 依照執行的結果把 dependency 拉出來,就可以看出來裡面產生了 loop,代表不可能在 SERIALIZABLE 下三個都成功。

在 Jespen 找到這些 bug 後,PostgreSQL 方面也找到軟體內產生 bug 的部份,並且修正了:「Avoid update conflict out serialization anomalies.」,看起來是在 PostgreSQL 引入 Serializable Snapshot Isolation (SSI) 的時候就有這個 bug,所以 9.1 以後的版本都有這個問題...

這次順利打下來,測得很漂亮啊... 翻了一下 Jespen 上的記錄,發現好像還沒測過 MySQL,應該會是後續的目標?

從 Oracle 轉移到 PostgreSQL 的工具 Orafce

在「Migrating from Oracle to PostgreSQL: Tips and Tricks」這邊看到在討論怎麼從 Oracle 資料庫轉移到 PostgreSQL 上。

開頭介紹了 Orafce,實做了一些 Oracle 上的 function,可以使得轉移時不用改寫太多 SQL:

The "orafce" project implements of some functions from the Oracle database. The functionality was verified on Oracle 10g, and the module is useful for production work.

先記錄起來,之後如果有機會的話比較好找...

PostgreSQL 上去識別化的套件

在「PostgreSQL Anonymizer 0.5: Generalization and k-anonymity」這邊看到的套件,看起來可以做到一些常見而且簡單的去識別化功能:

The extension supports 3 different anonymization strategies: Dynamic Masking, In-Place Anonymization and Anonymous Dumps. It also offers a large choice of Masking Functions: Substitution, Randomization, Faking, Partial Scrambling, Shuffling, Noise Addition and Generalization.

看起來可以把欄位轉成 range 這件事情半自動化處理掉 (還是需要 SQL 本身呼叫這些函數),之後遇到 PII 的時候也許會用到...

把 PostgreSQL 的 EXPLAIN 轉成 Flamegraph

Hacker News Daily 上看到 mgartner/pg_flame 這個專案,可以把 PostgreSQLEXPLAIN 結果 (JSON 格式) 轉成 Flamegraph (用 HTML 呈現):

不過我是直接看 EXPLAIN 的輸出比較習慣... 但如果需要做投影片的時候,應該是個好工具?

PostgreSQL 的 Bloom index

前幾天才跟人提到 PostgreSQL 的功能與完整性比 MySQL 多不少,剛剛又看到 Percona 的「Bloom Indexes in PostgreSQL」這篇,裡面提到了 PostgreSQL 可以使用 Bloom filter 當作 index。

查了一下資料是從 PostgreSQL 9.6 支援的 (參考「PostgreSQL: Documentation: 9.6: bloom」這邊的說明),不過說明裡面沒看到 DELETE (以及 UPDATE) 會怎麼處理,因為原版的 Bloom filter 資料結構應該沒有能力處理刪除的情況...

另外這幾年比較有名的應該是 Cuckoo filter,不只支援刪除,而且空間與效能都比 Bloom filter 好,不知道為什麼是實做 Bloom filter...

在 SQL 裡面避免大量刪除資料的方式

看到 Percona 的「An Overview of Sharding in PostgreSQL and How it Relates to MongoDB’s」這篇,雖然是在講 PostgreSQL 上的 sharding (以及 partition),突然想到好像沒寫過要怎麼避免大量刪除資料的操作...

一個常見的情境是,想要讓某個表格只保留這一個月的資料,所以每個月開頭都會跑一隻 cron job 負責刪掉上個月的資料,像是 DELETE FROM xxx WHERE timestamp < yyy; 這樣的指令。

這個方式無論是在 PostgreSQL 或是 MySQL 都需要很多時間與 I/O 資源,而透過 partition 將不同時間區段切開到不同的表格,再用 TRUNCATE 直接清空表格剛好可以解這樣的問題。

Percona 的文章裡說了一些 PostgreSQL 的歷史與目前的進展。

在 PostgreSQL 9 或更早以前的版本,一個常見的作法是透過 table inheritance 實做 partition,然後用再用 function 實做 INSERT

CREATE TABLE temperature (
  id BIGSERIAL PRIMARY KEY NOT NULL,
  city_id INT NOT NULL,
  timestamp TIMESTAMP NOT NULL,
  temp DECIMAL(5,2) NOT NULL
);

CREATE TABLE temperature_201901 (CHECK (timestamp >= DATE '2019-01-01' AND timestamp <= DATE '2019-01-31')) INHERITS (temperature);
CREATE TABLE temperature_201902 (CHECK (timestamp >= DATE '2019-02-01' AND timestamp <= DATE '2019-02-28')) INHERITS (temperature);
CREATE TABLE temperature_201903 (CHECK (timestamp >= DATE '2019-03-01' AND timestamp <= DATE '2019-03-31')) INHERITS (temperature);

CREATE OR REPLACE FUNCTION temperature_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
    IF ( NEW.timestamp >= DATE '2019-01-01' AND NEW.timestamp <= DATE '2019-01-31' ) THEN INSERT INTO temperature_201901 VALUES (NEW.*);
    ELSIF ( NEW.timestamp >= DATE '2019-02-01' AND NEW.timestamp <= DATE '2019-02-28' ) THEN INSERT INTO temperature_201902 VALUES (NEW.*);
    ELSIF ( NEW.timestamp >= DATE '2019-03-01' AND NEW.timestamp <= DATE '2019-03-31' ) THEN INSERT INTO temperature_201903 VALUES (NEW.*);
    ELSE RAISE EXCEPTION 'Date out of range!';
    END IF;
    RETURN NULL;
END;
$$
LANGUAGE plpgsql;

在 PostgreSQL 10 之後,就直接支援一些與 partition 相關的設計,像是這樣:

CREATE TABLE temperature (
  id BIGSERIAL NOT NULL,
  city_id INT NOT NULL,
  timestamp TIMESTAMP NOT NULL,
  temp DECIMAL(5,2) NOT NULL
) PARTITION BY RANGE (timestamp);

CREATE TABLE temperature_201901 PARTITION OF temperature FOR VALUES FROM ('2019-01-01') TO ('2019-02-01');
CREATE TABLE temperature_201902 PARTITION OF temperature FOR VALUES FROM ('2019-02-01') TO ('2019-03-01');
CREATE TABLE temperature_201903 PARTITION OF temperature FOR VALUES FROM ('2019-03-01') TO ('2019-04-01');

雖然還是有些限制,但可以看出比起以前簡單不少。

而有了 partition 後,文章的後續就在討論這跟 MongoDB 的 sharding 有什麼關係,但這就不是我關注的事情了...

CockroachDB 也拋棄 Open Source License 了

CockroachDB 的主力在於 PostgreSQL 的相容層 (包括底層資料結構,SQL 語法,以及 Protocol,所以原有的 client 不需要太多修改就可以用),並且提供橫向擴充的能力 (實作類似於 F1 與 Spanner 這些論文的功能)。

現在他們也宣佈拋棄 Open Source License 了,從本來的 Apache License 2.0 轉為他們自己定義的 Business Source License:「Why We’re Relicensing CockroachDB」。

最大的差異就是擋提供服務:

The one and only thing that you cannot do is offer a commercial version of CockroachDB as a service without buying a license.

商業版本最終會以 open source license 釋出,但會有三年延遲 (以現在的社群速度,基本上就等於不提供了),不算太意外,但這樣的話也需要先從可用的列表上移除了...

PostgreSQL 的 Don't Do This

Hacker News Daily 上看到的資料,整理了 PostgreSQL 上不要使用的功能:「Don't Do This」,而且是放在官方網域 wiki.postgresql.org 上。

裡面這些想法不知道出處是哪邊... 有不少功能算是 PostgreSQL 特有的功能 (以 open source RDBMS 這個領域來看),而且大概也還想的到用的場景,你卻在上面叫大家不要用,再寫的時候大概是吸了一批很純的,已經不知道要從哪邊開始吐槽...

要看的話連同 Hacker News 上的留言一起看會比較有前因後果:「https://news.ycombinator.com/item?id=19817531」。