Starting today, we’re excited to announce that any organization can use the secure, outbound-only connection feature of the product at no cost. You can still add the paid Argo Smart Routing feature to accelerate traffic.
As part of that change (and to reduce confusion), we’re also renaming the product to Cloudflare Tunnel. To get started, sign up today.
Write a program to count the frequencies of unique words from standard input, then print them out with their frequencies, ordered most frequent first. For example, given this input:
Incidentally, this problem set the scene for a wizard duel between two computer scientists several decades ago. In 1986, Jon Bentley asked Donald Knuth to show off “literate programming” with a solution to this problem, and he came up with an exquisite, ten-page Knuthian masterpiece. Then Doug McIlroy (the inventor of Unix pipelines) replied with a one-liner Unix shell version using tr, sort, and uniq.
不過當年玩的問題有點變形:
Given a text file and an integer k, print the k most common words in the file (and the number of their occurrences) in decreasing frequency.
The demonstration website can leak data at a speed of 1kB/s when running on Chrome 88 on an Intel Skylake CPU. Note that the code will likely require minor modifications to apply to other CPUs or browser versions; however, in our tests the attack was successful on several other processors, including the Apple M1 ARM CPU, without any major changes.
While experimenting, we also developed other PoCs with different properties. Some examples include:
A PoC which can leak 8kB/s of data at a cost of reduced stability using performance.now() as a timer with 5μs precision.
A PoC which leaks data at 60B/s using timers with a precision of 1ms or worse.
比較苦的消息是 Google 已經確認在軟體層沒辦法解乾淨,目前在瀏覽器上只能靠各種 isolation 降低風險,像是將不同站台跑在不同的 process 裡面:
In 2019, the team responsible for V8, Chrome’s JavaScript engine, published a blog post and whitepaper concluding that such attacks can’t be reliably mitigated at the software level. Instead, robust solutions to these issues require security boundaries in applications such as web browsers to be aligned with low-level primitives, for example process-based isolation.
Apple M1 也中這件事情讓人比較意外一點,看起來是當初開發的時候沒評估?目前傳言的 M1x 與 M2 不知道會怎樣...
By analyzing our dataset further, we found the common underlying cause appeared to be the high number of page faults incurred at level 9. Ampere has demonstrated that by increasing the page size from 4K to 64K bytes, we can alleviate the bottleneck and bring the Ampere Altra at parity with the AWS Graviton2. We plan to experiment with large page sizes in the future as we continue to evaluate Altra.
但目前看起來應該都還算正向,看起來供貨如果穩定的話,應該有機會換過去?畢竟 ARM 平台可以省下來的電力太多了,現在因為 M1 對 ARM 的公關效果太驚人的關係,解釋起來會更輕鬆...
Not guaranteed. Notably, some implementations of sscanf are O(N), where N = std::strlen(buffer) [1]. For performant string parsing, see std::from_chars.
丟進 array 是 OK 的,但問題在於他需要判斷 entry 是否重複,卻沒有用 hash 或是 tree 的結構,而這邊大約有 63k 筆資料,用 array 實做就產生了 O(n^2) 的演算法:
But before it’s stored? It checks the entire array, one by one, comparing the hash of the item to see if it’s in the list or not. With ~63k entries that’s (n^2+n)/2 = (63000^2+63000)/2 = 1984531500 checks if my math is right. Most of them useless. You have unique hashes why not use a hash map.
if it’s called again within the string’s range, return cached value
而第二個問題他直接把檢查是否有重複的跳過,因為資料本身不重複:
And as for the hash-array problem, it’s more straightforward - just skip the duplicate checks entirely and insert the items directly since we know the values are unique.
I found this while making a collection of what C implementation does what at https://news.ycombinator.com/item?id=26298300.
There are two basic implementation strategies. The BSD (FreeBSD and OpenBSD and more than likely NetBSD too), Microsoft, GNU, and MUSL C libraries use one, and suffer from this; whereas the OpenWatcom, P.J. Plauger, Tru64 Unix, and my standard C libraries use another, and do not.
The 2002 report in the comp.lang.c Usenet newsgroup (listed in that discussion) is the earliest that I've found so far.