SSH 對傳入參數的 quoting

昨天在 Hacker News 首頁上看到「SSH quoting」這個,看得出來作者被 OpenSSH 玩弄到不要不要的樣子...

先簡單的整理一下:

$ ssh example.com 'cd /tmp; pwd'
/tmp
$ ssh example.com 'bash -l -c "cd /tmp; pwd"'
/tmp
$ ssh example.com bash -l -c "cd /tmp; pwd"  
/home/gslin

第三個指令發生的「預期外的行為」,但寫習慣的人會把指令全部包成一個字串,就很自然的避開這個問題了。當然 OpenSSH 的設計 (讓你不用加 quote 也會動) 的確也是容易中獎的點啦...

GitHub 支援 SSH 使用 Security Key 了

GitHub 宣佈支援使用 security key 的 SSH key 操作了:「Security keys are now supported for SSH Git operations」。

也就是需要 SSH key + security key 才有辦法認證,只有拿到 SSH key 或是 security key 都是沒有辦法認證過。

目前官方支援 ecdsa-sked25519-sk

Now you can use two additional key types: ecdsa-sk and ed25519-sk, where the “sk” suffix is short for “security key.”

不過在 Ubuntu 20.04 下用預設的系統只能支援 ecdsa-sk,因為 ed25519-sk 會遇到類似「ed25519 problem with libressl」這邊的問題,就算你用的是 OpenSSL

然後生完 key 後在 ~/.ssh/config 裡面指定對 github.com 使用這把 key:

Host github.com
    IdentityFile ~/.ssh/id_ecdsa_sk

接下來操作的時候就會需要碰一下 security key 了。

OpenSSH 8.4 預設停用 ssh-rsa

前幾天 OpenSSH 8.4 釋出了:「Announce: OpenSSH 8.4 released」。

比較重要的改變是 ssh-rsa 預設變成停用,因為是使用 SHA-1 演算法的關係:

It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm by default in a near-future release.

官方給了三個方案:

  • The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them.
  • The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5.
  • The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7.

掃了一下 ~/.ssh/known_hosts,看起來目前大多都是 ssh-ed25519 了,還有少數還是 ssh-rsa

翻了一下 Ubuntu 這邊的版本,16.04 是 7.2p2,看起來目前有支援的版本都可以用這三個。

官方有提到可以在 command 上強制關閉 ssh-rsa 測試的方法:

ssh -oHostKeyAlgorithms=-ssh-rsa user@host

現在看起來比較麻煩的是 Dropbear 的部份,我自己之前是有包 PPA 來用 (2019.78),但看起來還是不夠新支援 ssh-ed25519 (要今年六月的 2020.79 才支援),所以也許要找時間來把 PPA 更新到 2020.80...

另外一種方法是走 ecdsa-sha2-nistp{256,384,521} 這些演算法,不過從名字就可以知道裡面演算法的由來,卡個 NIST 在那邊看起來就不太舒服,但還是寫一下方法好了:

先用 dropbearkey 產生對應的 ecdsa host key:

sudo dropbearkey -t ecdsa -f /etc/dropbear/dropbear_ecdsa_host_key -s 256

再來在 /etc/default/dropbear 裡面把 DROPBEAR_EXTRA_ARGS 加上對應的 ecdsa host key 資訊,這邊直接用 -r 是因為他可以重複指定,不會影響到其他的 host key 設定:

# any additional arguments for Dropbear
DROPBEAR_EXTRA_ARGS="-r /etc/dropbear/dropbear_ecdsa_host_key"

然後重跑 dropbear 就可以了。

另外有興趣的人可以用 ssh -Q key 看 openssh client 支援的演算法。

OpenSSH 的三個進階用法:CA 架構、透過 Jump Server 連線、2FA

在「How to SSH Properly」這篇裡面講了三個 OpenSSH 的進階用法:CA 架構、透過 Jump Server 連線,以及 2FA 的設定。

之前蠻常看到使用 -o StrictHostKeyChecking=off 關閉檢查,但 OpenSSH 有支援 CA 架構,可以先產生出 Root CA,然後對 Host 的 Public Key 簽名,在連線的時候就可以確保連線沒有被調包 (通常是 MITM),但得設計一套機制,自動化機器生出來後的步驟。

另外一個可能的方式是 SSHFP,搭配 DNSSEC 也可以確認連線沒有被調包,不過這又牽扯到 DNS 的部份...

第二個提到的是 Jump Server (Bastion host),之前的作法是用 -A 把 authentication agent 帶過去再連進去,這邊則是教你怎麼下指令直接連線,而不需要先連到 Jump Server (但實際上底層是透過 Jump Server)。

第三個是 2FA,對於還是使用密碼登入的系統可以多一層保護。文章裡面講的是 TOTP 的方式 (就是現在還蠻常見的 app + 六碼動態數字)。

先知道有這些東西,之後真的有用到的場景時再回來看...

AWS System Manager 支援 SSH 的 -L 功能 (Port Forwarding)

AWS System Manager 宣佈支援了 SSH Port Forwarding 的功能 (也就是 OpenSSH 指令裡的 -L):「New – Port Forwarding Using AWS System Manager Sessions Manager」。

以往是連到那台主機上後,再透過 -R 反過來再穿一層,但這必須在那台機器有 Internet 存取權限的情況下才有辦法做... 這次的方法是 AWS System Manager 直接提供了,所以只需要可以連到主機就可以做。

Mac 上讓 SSH 走 Socks5 的方式

在泰國住的飯店提供頗快的網路:

不過到 HiNet 看起來應該是有繞到美國之類的地區?

gslin@Gea-Suans-MacBook-Pro [~] [08:16/W4] mtr --report 168.95.1.1
Start: 2019-04-07T08:16:33+0700
HOST: Gea-Suans-MacBook-Pro.local Loss%   Snt   Last   Avg  Best  Wrst StDev
  1.|-- 10.10.20.1                 0.0%    10    1.8   2.0   1.3   3.1   0.6
  2.|-- node-iyp.pool-101-108.dyn  0.0%    10    3.9   3.6   2.7   4.5   0.6
  3.|-- 172.17.36.105              0.0%    10    3.2   4.1   3.2   8.3   1.5
  4.|-- 203.113.44.205             0.0%    10    6.5   5.3   3.9   6.7   1.0
  5.|-- 203.113.44.177             0.0%    10    5.4   4.8   4.0   7.2   1.0
  6.|-- 203.113.37.194             0.0%    10    4.6   6.5   3.0  11.1   2.5
  7.|-- in-addr.net                0.0%    10    3.9   4.4   3.1   5.6   0.8
  8.|-- ???                       100.0    10    0.0   0.0   0.0   0.0   0.0
  9.|-- pcpd-4001.hinet.net        0.0%    10  355.4 356.9 355.1 365.4   3.0
 10.|-- pcpd-3212.hinet.net        0.0%    10  215.6 216.6 214.2 225.4   3.4
 11.|-- tpdt-3022.hinet.net        0.0%    10  219.4 215.9 214.0 221.5   2.5
 12.|-- tpdt-3012.hinet.net        0.0%    10  218.9 217.2 215.0 218.9   1.4
 13.|-- tpdb-3311.hinet.net        0.0%    10  212.5 212.9 211.9 214.1   0.6
 14.|-- 210-59-204-229.hinet-ip.h  0.0%    10  213.5 212.7 212.0 213.7   0.6
 15.|-- dns.hinet.net              0.0%    10  214.4 214.5 213.7 216.0   0.7

這樣有些影音服務只吃台灣 IP 就沒辦法用了,所以就得找方法來解決... 想法是透過我在 GCP 上開的機器繞回 HiNet,所以就得找 Mac 上 SSH 要怎麼設定 Socks5。

本來以為要用 tsocks 之類的工具 (i.e. 用 LD_PRELOAD 處理 connect()),但意外的在「SSH through a SOCKS Proxy? (client = OpenSSH OS X)」這邊看到可以用內建的 nc 處理,因為 nc 有支援 Socks5。

所以就變成兩包 ssh 指令:

ssh -D 1081 gcp.server
ssh -D 1080 -o "ProxyCommand nc -X 5 -x 127.0.0.1:1081 %h %p" hinet.server

然後 127.0.0.1:1080 就是打通的版本了,可以讓瀏覽器直接掛上去使用。

至於後來想起來不需要用 Socks5,可以用 ssh -L 而笑出來又是另外一件事情了 :o

OpenSSH 完全移除 SSHv1 的程式碼

在「OpenSSH Removes SSHv1 Support」這邊看到 OpenSSH 拔掉 SSHv1 程式碼的消息。

In a series of commits starting here and ending with this one, Damien Miller completed the removal of all support for the now-historic SSHv1 protocol from OpenSSH.

在新的 distribution 裡引入新版 OpenSSH 時就不會有 SSHv1 的功能了...

GitHub 決定在 2018/02/01 停用不安全的 HTTPS/SSH 演算法

在「Discontinue support for weak cryptographic standards」這邊訂了日期,2018/02/01 將會關閉:

看起來最苦的應該是 Android 4.3 以及更早的版本,以現在的官方數字來看還有 13%+ (Dashboards),這些版本內建的瀏覽器不支援 TLSv1.2,不過另外裝 browser 就還能過...

OpenSSL 的 DSA 被 Side-channel attack 打爆

在「Make Sure DSA Signing Exponentiations Really are Constant-Time」這篇文章裡面,直接透過 end-to-end 的 timing attack 打爆 (也就是透過 internet 觀察攻擊),而不需要在同一台機器上對 cache 之類的區域攻擊:

A unique feature of our work is that we target common cryptographic protocols. Previous works that demonstrate cache-timing key-recovery attack only target the cryptographic primitives, ignoring potential cache noise from the protocol implementation. In contrast, we present end-to-end attacks on two common cryptographic protocols: SSH and TLS. We are, therefore, the first to demonstrate that cache-timing attacks are a threat not only when executing the cryptographic primitives but also in the presence of the cache activity of the whole protocol suite.

而且次數相當的少,就可以 key recovery:

260 SSH-2 handshakes to extract a 1024/160-bit DSA host key from an OpenSSH server, and 580 TLS 1.2 handshakes to extract a 2048/256-bit DSA key from an stunnel server.

CVE 編號為 CVE-2016-2178OpenSSL 全系列 (包括 fork 出去的版本) 與 OpenSSH 只要是 DSA 的實作都中獎...