用 NN 演算法重製 Full HD 版的 Star Trek: DS9

看到「Remastering Star Trek: Deep Space Nine With Machine Learning」這篇,裡面用了類神經網路演算法,將本來只有 480p (SD) 的 Star Trek: DS9 升到 1080p (Full HD) 的版本,而且看起來效果還不錯...

意外的看到有人拿 Star Trek 的材料來玩... 依照作者的說明,DS9 一直沒有 Full HD 版的其中一個原因反而是因為「數位化」了。使用類比膠卷的母帶可以透過更高規格的重新掃描而得到高畫質版本,但 DS9 的母帶似乎已經是數位版了,所以反而造成無法透過重新掃描的方式取得 Full HD 版本:

While you can rescan analog film at a higher resolution, video is digital and can't be rescanned. This makes it much costlier to remaster this TV show, which is one of the reasons why it hasn't happened.

現有的 upscale 技術主要都還是以圖片為主,所以作者本來以為對於動態畫面的處理會遇到問題,但蠻意外的超出預期,從影片可以看出來:

看起來之後的 remaster 版本有可能可以靠這個方法先做初步,然後再讓人進去修?

基於 RNN 的無損壓縮

Hacker News 上看到「DeepZip: Lossless Compression using Recurrent Networks」這篇論文,利用 RNN 幫助壓縮技術壓的更小,而程式碼在 GitHubkedartatwawadi/NN_compression 上有公開讓大家可以測試。

裡面有個比較特別的是,Lagged Fibonacci PRNG 產生出來的資料居然有很好的壓縮率,這在傳統的壓縮方式應該都是幾乎沒有壓縮率...

整體的壓縮率都還不錯,不過比較的對象只有 gzip,沒有拿比較先進的壓縮軟體進行比較) 像是 xz 之類的),看數字猜測在一般的情況下應該不會贏太多,不過光是 PRNG 那部份,這篇論文等於是給了一個不同的方向讓大家玩...