Home » Posts tagged "module"

GCP 推出 Cloud HSM (beta)

這算是 Google Cloud Platform 在補產品線,讓那些有強制使用 HSM 的需求的應用 (通常是遇到一定要 FIPS 140-2 的規範) 可以搬上雲端:「Introducing Cloud HSM beta for hardware crypto key security」。

從圖片上可以看到 LiquidSecurity,應該是「LiquidSecurity® General Purpose HSM Adapters and Appliances」這個產品:

如同 AWSCloudHSM 服務,GCP 的 Cloud HSM 也是提供 FIPS 140-2 Level 3:

Cloud HSM allows you to host encryption keys and perform cryptographic operations in FIPS 140-2 Level 3 certified HSMs (shown below).

演算法上,支援 AESRSAECC (NIST 的 P-256 與 P-384):

In addition to symmetric key encryption using AES-256 keys, you can now create various types of asymmetric keys for decryption or signing operations, which means that you can now store your keys used for PKI or code signing in a Google Cloud managed keystore. Specifically, RSA 2048, RSA 3072, RSA 4096, EC P256, and EC P384 keys will be available for signing operations, while RSA 2048, RSA 3072, and RSA 4096 keys will also have the ability to decrypt blocks of data.

目前只支援 us-east1us-west1,另外價錢也比軟體服務版本的 Cloud KMS 貴不少:

Billable itemFor keys with protection level SOFTWAREFor keys with protection level HSM
Active AES-256 and RSA 2048 key versions$0.06 per month$1.00 per month
Active RSA 3072, RSA 4096 or Elliptic Curve key versions$0.06 per month$2.50 per month for the first 2,000
$1.00 per month thereafter
Destroyed key versionsFreeFree
Key operations: Cryptographic$0.03 per 10,000 operations$0.03 per 10,000 operations for AES-256 and RSA 2048 keys
$0.15 per 10,000 operations for RSA 3072, RSA 4096, and Elliptic Curve keys
Key operations: AdminFreeFree

不過一般情況應該不會得用 CloudHSM,先有個印象就好...

Rust 是不錯啦,不過...

作者寫了一篇「Creating Rust-based NodeJS modules」講同樣演算法 Node.js 要跑 3.5 秒,Rust 只要跑 130ms,所以 Rust 很棒棒之類的...

So about 3.5 seconds for an answer, in web time that is like an eternity. Our algorithm is a very straight forward one, basically just a filter on a large array.

The exact same algorithm, with the exact same CSV and coordinates is now executing in about 130ms.


這讓我想到之前在「看到 zmx 貼了之前的連結,更確信 Uber 的問題不是技術問題了...」這篇提到的文章「Unwinding Uber’s Most Efficient Service」:

很想講「傻逼你先把演算法修好再來怪 Node.js 慢」,程式會愈來愈難維護都是你們這種人引入一堆複雜的東西 -_-

nvm 換 n

前幾天在 Twitter 上抱怨 nvm 很慢,導致 Zsh 開起來很頓 (然後也同步到 Facebook 上):

原因在於 .bashrc 或是 .zshrc 內初始化 nvm 時會呼叫 npm config get prefix,而這個命令很慢:「`npm config get prefix` takes incredibly long (7 - 70 seconds) #14458」。

後來在 Facebook 的留言處有朋友提了幾個方案... 其中一個是 n,花了些時間看軟體架構,有夠簡單... XD 對於不是拿 Node.js 開發的人應該是夠用了 (我只拿來跑一些用 Node.js 寫的工具)。

整個軟體就一個 shell script,把他丟進 ~/bin/ 裡面 (我有把 ~/bin/ 放到 PATH 裡),就可以用了。透過 N_PREFIX 設定他的基地 (預設是 /usr/local,我是設成 $HOME),剩下就跑 n lts,他就把 nodenpm 兩個檔案裝好給你用。

路徑的部份要自己設定,將 $N_PREFIX/node_modules/.bin 放進 PATH,這樣安裝起來的模組如果有可執行工具可以用才能直接跑 (像是 gulp.js 的命令)。

另外,之所以會說不適合開發者用的部份,是因為 module 是跨版本共用的 (切換 node 版本時就是用另外一個版本配上去 XD),所以比較不適合開發者使用...

AWS CloudHSM 支援 FIPS 140-2 Level 3 了

AWS CloudHSM 推出了一些新功能:「AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads」。

其中比較特別的是從以前只支援 Level 2 變成支援 Level 3 了:

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM.

在維基百科裡面有提到 Level 2 與 Level 3 的要求:

Security Level 2 improves upon the physical security mechanisms of a Security Level 1 cryptographic module by requiring features that show evidence of tampering, including tamper-evident coatings or seals that must be broken to attain physical access to the plaintext cryptographic keys and critical security parameters (CSPs) within the module, or pick-resistant locks on covers or doors to protect against unauthorized physical access.

In addition to the tamper-evident physical security mechanisms required at Security Level 2, Security Level 3 attempts to prevent the intruder from gaining access to CSPs held within the cryptographic module. Physical security mechanisms required at Security Level 3 are intended to have a high probability of detecting and responding to attempts at physical access, use or modification of the cryptographic module. The physical security mechanisms may include the use of strong enclosures and tamper-detection/response circuitry that zeroes all plaintext CSPs when the removable covers/doors of the cryptographic module are opened.

主動式偵測以及銷毀算是 Level 3 比 Level 2 安全的地方。


Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

nginx 的 mirror 功能

nginx 1.13.4 出的新功能,ngx_http_mirror_module

The ngx_http_mirror_module module (1.13.4) implements mirroring of an original request by creating background mirror subrequests. Responses to mirror subrequests are ignored.


location / {
    mirror /mirror;
    proxy_pass http://backend;

location /mirror {
    proxy_pass http://test_backend$request_uri;

如果拿 nginx 當 load balancer 的人,可以用這個功能做些事情...

nginx 記錄 TLS 連線資訊

想要在 nginx 的 access log 裡面記錄使用者在 HTTPS 連線使用的 TLS protocol 與 cipher。

在「How can I let nginx log the used SSL/TLS protocol and ciphersuite?」這邊有提到方向是 $ssl_protocol$ssl_cipher (出自「Module ngx_http_ssl_module」內的 Embedded Variables 章節)。

他的方式是在前面就插入 protocol,但我希望前面的欄位保持不變,把 protocol & cipher 放到後面,所以我就加了一個 /etc/nginx/conf.d/combined_ssl.conf (這邊我用 ondrej 的 PPA,在設定檔裡會撈 /etc/nginx/conf.d/ 下的設定,不確定其他的情況如何):

log_format combined_ssl '$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $ssl_protocol/$ssl_cipher';

然後本來用 combined 的 HTTPS 設定就改成 combined_ssl

來放一陣子再來分析,然後想看看要怎麼調整 cipher...

Etsy 如何用 Let's Encrypt 的 SSL certificate 做生意...

Etsy 的「How Etsy Manages HTTPS and SSL Certificates for Custom Domains on Pattern」這篇文章講了如何用 Let's Encrypt 實作 Custom Domain。

主要是因為 Let's Encrypt 在設計時就考慮到的 auto-renew 機制,可以全自動處理後續的動作。這使得接 Let's Encrypt 比起接其他家來得容易 (而且省掉許多費用與合約上要處理的問題)。

文章後半段則是討論另外一個問題:當你有上千把 private key (& certificate) 時要怎麼管理,以確保這些 private key 都夠安全。其中有提到未來打算要引入 HSM

One of our stretch goals is to look into deploying HSMs. If there are bugs in the underlying software, the integrity of the entire system could be compromised thus voiding any guarantees we try to keep. While bugs are inevitable, moving critical cryptographic functions into secure hardware will mitigate their impact.

由於不太可能是把所有的 private key 塞到 HSM 裡面,應該是用 HSM 管理加密後的 private key,可以想像一下整個系統又會多了好幾個元件將責任拆開...

Apple 打算把 iCloud 加密用的 Key 放到用戶端

在經過最近 FBIApple 的戰鬥中 (FBI–Apple encryption dispute),Apple 正規劃把 iCloud 加密所使用的 key 放到用戶端裝置上,而非放在伺服器端:「Apple to Hand iCloud Encryption Key Management to Account Holders」:

In effect, Apple is following the lead of secure cloud services such as SpiderOak which has been offering what it calls “Zero Knowledge” cloud storage. By that, SpiderOak retains no information about whatever is stored in its cloud service, nor the means of gaining access to it.

也就是加解密都放在 client 端處理,server 端只是 storage。

這類型最大的問題是 server 端沒辦法運用資料,但 iCloud 的確可以放掉這些功能 (搜尋之類的),純粹當 storage 使用,藉以讓使用者自己裝置保護。

而蘋果在使用者的裝置上把類似於 HSM 的系統做的頗強大... 不知道 Android 有沒有機會也跟進。(雖然我自己是用 Apple 家的東西...)

Ubuntu 搞定 ZFS 授權問題,將直接納入系統中使用

Canonical 的人 (Ubuntu 背後的公司) 跟律師研究後決定採用 .ko 的方式 (就像 nvidia.ko 的方式) 納入 ZFS,讓 Ubuntu 的人可以更方便使用,而不是像現在要另外手動做不少步驟:「ZFS Licensing and Linux」。

依照 Canonical 的研究,CDDL (ZFS) 與 GPLv2 (Linux) 的授權方式不同,所以可以找到方法交叉避開衝突:

While the CDDL and GPLv2 are both "copyleft" licenses, they have different scope. The CDDL applies to all files under the CDDL, while the GPLv2 applies to derivative works.

The CDDL cannot apply to the Linux kernel because zfs.ko is a self-contained file system module -- the kernel itself is quite obviously not a derivative work of this new file system.

And zfs.ko, as a self-contained file system module, is clearly not a derivative work of the Linux kernel but rather quite obviously a derivative work of OpenZFS and OpenSolaris. Equivalent exceptions have existed for many years, for various other stand alone, self-contained, non-GPL kernel modules.

至於這種說法是不是成立,至少在還沒上法院認證前也還不知道... 不過看起來 Canonical 是頗有自信,打算將 ZFS 弄進 Ubuntu,上面有不少好用的東西...