Home » Posts tagged "mariadb" (Page 2)

繼續學 Isolation...

在「測試 MariaDB 上 Galera Cluster 的 Isolation」這邊與「從頭學一次 Isolation level 的 REPEATABLE-READ 與 SERIALIZABLE」對應了 Stripe 的「Call me Maybe: MariaDB Galera Cluster」以及 Percona 的「Clarification on “Call me Maybe: MariaDB Galera Cluster”」這兩篇文章,兩邊在空中交火...

而「Call me Maybe: Percona XtraDB Cluster」這篇是目前最新的一篇 (文章日期有點怪怪的,不應該是 2015/09/04)。

畢竟 Galera Cluster 是目前現在在用的產品,雖然跑起來也沒什麼大問題,但預先多了解一點總是比較保險。而要參與這場 Isolation 戰爭,又花了不少時間看幾份資料。(包括重頭讀的)

第一個當然是 1992 年發表的 SQL-92:「ISO/IEC 9075:1992, Database Language SQL」,在 SQL-92 定義了四個 Isolation 的層級,分別是 SERIALIZABLEREPEATABLE READREAD COMMITTEDREAD UNCOMMITTED

另外一篇常被拿出來討論的是 1995 年由微軟帶頭發表的「A Critique of ANSI SQL Isolation Levels」,主要是提出 Snapshot Isolation 的定義。

後來讀到覺得真的很怪的時候到 Stack Exchange 上的 Database Administrators 問:「Does SQL92's REPEATABLE-READ preclude Write Skew (A5B)?」,確認了我的想法。

這篇算是讀書心得吧,留給自己用的 :p

首先是 REPEATABLE READ 的定義是透過「現象」定義,只要符合這些條件就可以被稱作 REPEATABLE READ,這包括了保證不會出現 P1 ("Dirty read"):

1) P1 ("Dirty read"): SQL-transaction T1 modifies a row. SQL-transaction T2 then reads that row before T1 performs a COMMIT. If T1 then performs a ROLLBACK, T2 will have read a row that was never committed and that may thus be considered to have never existed.

以及保證不會出現 P2 ("Non-repeatable read"):

2) P2 ("Non-repeatable read"): SQL-transaction T1 reads a row. SQL-transaction T2 then modifies or deletes that row and performs a COMMIT. If T1 then attempts to reread the row, it may receive the modified value or discover that the row has been deleted.

並且保證 Atomicity 以及 no updates will be lost:

The four isolation levels guarantee that each SQL-transaction will be executed completely or not at all, and that no updates will be lost.

只要做到這些條件,就可以說符合 SQL-92 的 REPEATABLE READ 要求。


另外一方面,在「A Critique of ANSI SQL Isolation Levels」定義的 SQL-92 認為 REPEATABLE READ 是透過 locking 機制實作的 (整篇的寫法的確是朝這個方向走),並且基於 locking mechanism 來推論後續的行為,所以這篇 paper 裡面很多說明是帶著這個大前提的。

而當時已經有資料庫是使用 MVCC 架構在實作,可以透過 read snapshot 的方式找出另外一條路。

舉例來說,InnoDB 對 REPEATABLE READ 實作的方式是透過 snapshot 實作:(出自「MySQL :: MySQL 5.6 Reference Manual :: 13.3.6 SET TRANSACTION Syntax」)

For consistent reads, there is an important difference from the READ COMMITTED isolation level: All consistent reads within the same transaction read the snapshot established by the first read. This convention means that if you issue several plain (nonlocking) SELECT statements within the same transaction, these SELECT statements are consistent also with respect to each other.

這樣避開了 P1、P2 (甚至多做避開到了 P3,不過這邊不重要),並且 Atomicity。而 Update Lost 問題則再透過 lock 機制避免。所以 InnoDB 的 REPEATABLE READ 其實比 SQL-92 的要求多做到了很多事情...


到這邊再回頭看原來的討論文章,才會發現 Isolation 裡有滿滿的地雷可以採 XD

從頭學一次 Isolation level 的 REPEATABLE-READ 與 SERIALIZABLE

在「測試 MariaDB 上 Galera Cluster 的 Isolation」這篇提到了 StripeKyle Kingsbury 寫了「Call me Maybe: MariaDB Galera Cluster」這篇文章,在討論 Galera Cluster 的 Isolation 問題。

Percona 的 CTO Vadim Tkachenko 寫了回應的文章:「Clarification on “Call me Maybe: MariaDB Galera Cluster”」。

看完後再跑去翻了一些資料,首先是 SQL 92 對 Isolation 的原始定義,尤其是對 REPEATABLE-READ 的定義。

REPEATABLE-READ 是透過 P2 ("Non-repeatable read") 來定義的,只要保證不會發生 P2 就是 REPEATABLE-READ 了:

P2 ("Non-repeatable read"): SQL-transaction T1 reads a row. SQL-transaction T2 then modifies or deletes that row and performs a COMMIT. If T1 then attempts to reread the row, it may receive the modified value or discover that the row has been deleted.

也就是說,T1 讀過的 row 只要在 T1 transaction 的期間內都保持一樣就可以。由於沒有多餘其他保證,所以有機會產生 P3 ("Phantom") 問題:

P3 ("Phantom"): SQL-transaction T1 reads the set of rows N that satisfy some . SQL-transaction T2 then executes SQL-statements that generate one or more rows that satisfy the used by SQL-transaction T1. If SQL-transaction T1 then repeats the initial read with the same <search condition>, it obtains a different collection of rows.

SERIALIZABLEREPEATABLE-READ 的定義方式不同,並不是避免 P3 就可以叫做 SERIALIZABLE。SQL 92 定義說明必須與序列執行的結果一樣才能叫做 SERIALIZABLE

The execution of concurrent SQL-transactions at isolation level SERIALIZABLE is guaranteed to be serializable. A serializable execution is defined to be an execution of the operations of concurrently executing SQL-transactions that produces the same effect as some serial execution of those same SQL-transactions. A serial execution is one in which each SQL-transaction executes to completion before the next SQL-transaction begins.

所以依照定義,SERIALIZABLE 一定可以避免 P3 發生,但避免了 P3 不代表做到 SERIALIZABLE

另外一份資料是「MySQL :: MySQL 5.6 Reference Manual :: 13.3.6 SET TRANSACTION Syntax」對於 MySQL 5.6 中 InnoDB 實作 REPEATABLE-READ 的細節:

This is the default isolation level for InnoDB. For consistent reads, there is an important difference from the READ COMMITTED isolation level: All consistent reads within the same transaction read the snapshot established by the first read. This convention means that if you issue several plain (nonlocking) SELECT statements within the same transaction, these SELECT statements are consistent also with respect to each other. See Section 14.2.2.2, “Consistent Nonlocking Reads”.

InnoDB 的 REPEATABLE-READ 會在第一次讀取時建立一份 snapshot,所以 MySQL 的 REPEATABLE-READ 有達到不產生 P2 的要求,但也因為 snapshot 的關係而不會產生 P3,不過也就僅此而已,寫入的部份還是沒有達到 SERIALIZABLE 的要求。

回到原來的文章所整理出來的測試資料 (我稍微排版過),在這兩個不同的 transaction 同時發生時:(不同人都轉帳給 id = 8)

BEGIN; -- T1
SELECT balance FROM accounts WHERE account_id = 5;
SELECT balance FROM accounts WHERE account_id = 8;
UPDATE account SET balance = 75 WHERE account_id = 5;
UPDATE account SET balance = 125 WHERE account_id = 8;
COMMIT;
BEGIN; -- T2
SELECT balance FROM accounts WHERE account_id = 6;
SELECT balance FROM accounts WHERE account_id = 8;
UPDATE account SET balance = 80 WHERE account_id = 6;
UPDATE account SET balance = 120 WHERE account_id = 8;
COMMIT;

SERIALIZABLE 保證執行結果會與某種循序的結果相符 (可能是 T1 -> T2,也可能是 T2 -> T1)。但 REPEATABLE-READ 只保證在 transaction 裡面看到的 row 不會變化。

在 MySQL 裡,如果你想要跟 MySQL 告知「變更的結果會收到某些欄位的值的影響」,你至少要用 LOCK IN SHARE MODE 來做 (或是用 FOR UPDATE 會更清楚表示出意思),也就是:

BEGIN; -- T1
SELECT balance FROM accounts WHERE account_id = 5 LOCK IN SHARE MODE;
SELECT balance FROM accounts WHERE account_id = 8 LOCK IN SHARE MODE;
UPDATE account SET balance = 75 WHERE account_id = 5;
UPDATE account SET balance = 125 WHERE account_id = 8;
COMMIT;
BEGIN; -- T2
SELECT balance FROM accounts WHERE account_id = 6 LOCK IN SHARE MODE;
SELECT balance FROM accounts WHERE account_id = 8 LOCK IN SHARE MODE;
UPDATE account SET balance = 80 WHERE account_id = 6;
UPDATE account SET balance = 120 WHERE account_id = 8;
COMMIT;

這樣至少會有一個 transaction 會出現 deadlock 訊息,於是就會確保是正確的結果:

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

值得一提的是,Percona 文章提到的第二種解法是有問題的:

BEGIN;
SELECT balance FROM accounts WHERE account_id = 5;
SELECT balance FROM accounts WHERE account_id = 8;
UPDATE account SET balance = balance - 25 WHERE account_id = 5;
UPDATE account SET balance = balance + 25 WHERE account_id = 8;
COMMIT;

這樣「總和」會因為保證原子性 (atomicity) 所以不會產生問題,但 balance 可能會產生出負數。

所以結論是 Kyle Kingsbury 那篇文章測試的方法本來就有問題,在 SELECT 時少了 LOCK IN SHARE MODE 或是 FOR UPDATE 的要求。

測試 MariaDB 上 Galera Cluster 的 Isolation

雖然人還在大阪員旅,不過看到這篇很精彩的測試還是先寫下來:「Call me Maybe: MariaDB Galera Cluster」,作者在 Stripe 花了很多時間在測試各種資料庫的資料正確性。

由於 PerconaPercona XtraDB Cluster (PXC) 是基於 Galera Cluster 改出來的,再加上敝公司裡面大量使用 PXC,決定還是趕緊花時間看完整篇文章確認到底講了什麼。

先講目前看到的結論:

  • 作者認為 Galera Cluster 官方宣稱的 SNAPSHOT-ISOLATION (SI) > REPEATABLE-READ (RR) 是有問題的講法,在學理上 SI 與 RR 都低於 SERIALIZABLE (1SR),也都高於 READ-COMMITTED (RC),但兩者之前沒有直接包含。
  • Galera Cluster 的測試結果看起來沒有做到 SI 的要求,不過測試中看起來有達到 READ-UNCOMMITTED (RU),在 RC 的測試中也沒找到問題,不過作者還是懷疑系統有達到 RC 的要求。

另外從其他討論串看起來,當所有人寫入都到同一台就沒有這些狀況,可以達到 1SR 的要求,這也是目前還蠻常見的系統設計,所以這次的問題看起來沒有這麼大。

後面也提到裝 MySQL Cluster 裝了好幾個禮拜還是裝不起來的事情:

Galera is easy to install–I spent weeks trying to set up MySQL Cluster to no avail, and got Galera Cluster running in a matter of hours.

有種,不是很意外的感覺...

Anyway,原文下面的 comment 可以看到 Baron Schwartz 也跑出來討論,另外在 GitHub 上有開始有討論了:「Snapshot Isolation may not be as isolated as one would like」,看起來直接戳破 Galera Cluster 支援 SI 的宣傳詞了,接下來拉板凳繼續看戲吧... XD

MySQL 上的 Thread Pool...

Percona 的人寫了一篇「Percona Server: Improve Scalability with Percona Thread Pool」,提到關於 MySQL 在連線數很多時的效能。

傳統的作法是一個連線使用一個 thread,這種方法實做起來很簡單,但當連線數超過一定程度時就會因為共用資源的限制而變慢。

其中一種解決方法是引入 Thread Pool 架構,也就是 M 個 thread 處理 N 個連線。

Oracle 有提供商用版本叫做 Thread Pool Plugin,就如同名字,是以 plugin 形式存在。這個功能在 5.55.6 都有。

MariaDB 也有 open source 實做的 Thread pool

而 Percona 則是使用 MariaDB 的版本。(原文是說有改善,不過 benchmark 並沒有列出來,我「猜」其實沒什麼改善...)

可以看到在多連線數時的效果相當好。在 MariaDB 的文件裡有提到會有改善的時機:

Threadpools are most efficient in situations where queries are relatively short and the load is CPU bound (OLTP workloads). If the workload is not CPU bound, you might still want to limit the number of threads to save memory for the database memory buffers.

query 相對短,而且是 CPU bound。

回頭看的時候發現 Percona Server 5.5 就有支援 Thread Pool 了,應該來測試看看效果如何...

維基百科英文版與德文版的資料庫 (條目最多的兩個語言) 從 MySQL 轉移到 MariaDB 了...

維基百科官方宣佈兩個條目最多的資料庫 (英文與德文) 已經從 MySQL (有 FB patch 的版本) 轉移到 MariaDB 5.5 了:「Wikipedia Adopts MariaDB」。

維基百科的資料庫從 MySQL 4.0 升級到 MySQL 5.1 時花了不少功夫轉換 (可以想像出來,這兩個版本的差距...),然後這次再到這次的 MariaDB 5.5 就輕鬆不少。

在文章內有提到因為維基百科是 read-heavy site,大多數前端的負荷都在 squid 層擋下來,實際到後端的量則是再透過 Redismemcached 打散負荷。不過即使做了這麼多層 cache,英文版資料庫在尖峰時間還是有 50k qps 的量在跑。

尖峰時間這 50k qps 的量有 80% (也就是 40k qps) 是打散到兩台不同地點的 slave 上,平均的 query response time 是 0.2ms,95% 則是 50ms (好高),其他的 20% 是寫入 master 需求,或是因寫入 master 時需要一致性 (也就是要避免 replication lag 造成的問題)。

這次升級到 MariaDB 5.5.30 是先準備一台新機器,然後在 load balancer 上換掉其中一台 slave (先建後拆),如果 MariaDB 真的有問題也可以馬上 rollback 回來。另外用 pt-query-digest 取樣分析 query 的狀況。

這是成果:

For our most common query type, 95th percentile times over an 8-hour period dropped from 56ms to 43ms and the average from 15.4ms to 12.7ms. 50th percentile times remained a bit better with the 5.1-facebook build over the sample period, 0.185ms vs. 0.194ms. Many query types were 4-15% faster with MariaDB 5.5.30 under production load, a few were 5% slower, and nothing appeared aberrant beyond those bounds.

第一台觀察一陣子沒問題後,接下來一台一台換掉。然後發公告慶祝 :p

MariaDB 10.0.1...

MariaDB 發表 MariaDB 10.0.1 了:「What does MariaDB 10.0.1 include – available now」。

公告的文章把一些資訊整理出來讓大家與 MySQL 5.6 比較... XD

  • MariaDB 10.0-only Features:只有 MariaDB 10.0 有的功能。
  • MariaDB 10.0 Merged Features:從 MySQL 5.6 拉回來的功能。
  • MariaDB 10.0 Reimplemented Features:兩邊都有的功能,不過 MariaDB 自己重新實作了 (重寫)。
  • MariaDB 5.x Features now in MySQL 5.6:MySQL 5.6 從 MariaDB 5.x 拉的功能
  • MariaDB 5.x Features Backported from MySQL 5.6:MariaDB 5.x 從 MySQL 5.6 拉出來的功能。

然後沒有列出 MySQL 5.6 有,但是 MariaDB 沒有的功能... XD

先不管這些東西,10.0.1 多了 Cassandra storage engine 看起來就很有趣啊,可以透過 MySQL server 當 Cassandra client 跑去 Cassandra Cluster 讀寫資料:

看說明是透過 CQL 要資料,所以仍然是受限於 CQL 的能力。

資料庫裡的浮點數:MySQL 5.1 到 MySQL 5.5 的差異...

Mozilla 最近在升級 MySQL 採「先建後拆」的步驟,發現用 pt-table-checksum 檢查時不一致:「MySQL 5.1 vs. MySQL 5.5: Floats, Doubles, and Scientific Notation」。

後來發現,在 MySQL 5.1 (5.1.65-rel14.0-log Percona Server (GPL), 14.0, Revision 475) 的查詢結果是:(Mozilla 的範例)

mysql> select float_field from db.tbl where id=218964;
+-------------+
| float_field |
+-------------+
| 9.58084e-05 |
+-------------+
1 row in set (0.04 sec)

而在 MySQL 5.5 (5.5.28a-MariaDB-log MariaDB Server) 的查詢結果是:

MariaDB [(none)]> select float_field from db.tbl where id=218964;
+--------------+
| float_field |
+--------------+
| 0.0000958084 |
+--------------+
1 row in set (0.24 sec)

最後是讓 pt-table-checksum 把 float/double 欄位忽略掉。在 comment 有人提出來是在 MySQL 5.5.3 的時候改變的,不過作者蠻意外沒什麼人提到...

Percona 說明關於為什麼花這麼多時間修正 MySQL 5.5.28 安全問題...

Percona 的 Stewart Smith 解釋為什麼花這麼多時間才修正這個安全漏洞:「CVE-2012-4414 strikes back in MySQL 5.5.29 (and what we’re doing in Percona Server 5.5.29)

MariaDB 的人在得知問題後先建立了 MDEV-382 這個 issue,然後建立了 rpl_mdev382.test 這份測試資料,讓其他參與者可以測試手上的 MySQL 是否有問題。

Oracle 在修正問題時並沒有使用 MariaDB 這份測試資料測過 (或是測過但因為種種因素...) 就推出 MySQL 5.5.29,但 MySQL 5.5.29 用 rpl_mdev382.test 測試會失敗,而實際確認發現 Oracle 並沒有把問題解乾淨。所以本來 Percona 預定要使用官方 MySQL 5.5.29 版本為基礎推出 Percona Server 5.5.29 (可以降低 Percona 維護成本),變成將會改用 MariaDB 的 patch。

讓 Percona 的人特地寫一篇出來,看起來對 Oracle 不太爽... XD

MySQL 內 JOIN 的應用...

Common use cases for the MySQL Join statement」這篇給的範例與把 MySQL 上常用到的幾種 JOIN 提出來分析,包括 index 與 explain。另外在「Managing hierarchical data with MySQL」也提到了要怎麼處理階層式資料。

對於 JOIN 大概分幾個階段:

  • 在使用 MyISAM 的時候會儘量避免 JOIN,因為當 SQL 執行時間久的時候會有好幾個 table 同時卡住無法寫入。
  • 改用 InnoDB 後一直用 JOIN,不論是報表或是 web SQL query,造成 CPU bound (雖然不是 table lock,但在 MVCC 架構下,讀取也還是有 lock 成本存在)。
  • 把 JOIN 形式的 web SQL query 拆成多個 SQL query 以降低 lock 成本;針對計算成本很高的結果 cache,再針對 cache 效果不佳的表格逆正規化。只有報表不受限使用 JOIN。

後面的階段則是 data sharding 與 NoSQL。不過每個階段的界線不是那麼明顯,有時候會重疊在一起...

說到逆正規化,MariaDBVirtual Columns + PERSIST 好像是逆正規化的好工具,再來測仔細一點...

Archives