超快速的 Base64 encoding/decoding 實做

看到「Base64 encoding and decoding at almost the speed of a memory copy」這個,可以超級快速編解碼 Base64 的資料。

實做上是透過 IntelAVX-512 加速,在資料夠大的情況下 (超過 L1 cache 的大小),可以達到接近字串複製的速度 (這邊提到的 memcpy()):

We show how we can encode and decode base64 data at nearly the speed of a memory copy (memcpy) on recent Intel processors, as long as the data does not fit in the first-level (L1) cache. We use the SIMD (Single Instruction Multiple Data) instruction set AVX-512 available on commodity processors. Our implementation generates several times fewer instructions than previous SIMD-accelerated base64 codecs.

不過這樣 AMD 暫時要哭哭...

Working Set Size (WSS) 的想法

NetflixBrendan Gregg (他比較知名的發明是 Flame Graph) 寫了一篇「How To Measure the Working Set Size on Linux」,他想要量測單位時間內會用到的記憶體區塊大小:

The Working Set Size (WSS) is how much memory an application needs to keep working. Your app may have populated 100 Gbytes of main memory, but only uses 50 Mbytes each second to do its job. That's the working set size. It is used for capacity planning and scalability analysis.

這可以拿來分析這些應用程式是否能夠利用 L1/L2/L3 cache 大幅增加執行速度,於是就可以做成圖,像是這樣:

在 Netflix 這樣人數的公司,需要設計一些有用的指標,另外發展出對應的工具,讓其他人更容易迅速掌握狀況,畢竟不是每個人都有上天下海的能力,遇到狀況可以馬上有頭緒進行 trouble shooting...