Dropbox 也要搞自己的密碼管理器

Dropbox 也要搞自己的密碼管理器 Dropbox Passwords:「Dropbox Passwords coming soon for all users」。

看起來只要是 Dropbox 的付費方案就可以無限使用,而免費版的則是 50 組。從下載頁看起來目前在 PC 上只支援 Microsoft WindowsmacOS,不支援 Linux

Come back to this page on a PC with Windows 10 or a Mac with at least macOS Sierra 10.12 to get the Passwords desktop app.

而行動平台就是 iOSAndroid

How do I use the Android and iPhone password manager?

Once you sign in to the Passwords app, it automatically fills in your usernames and passwords so you can access frequently used apps and websites on your mobile device.

從示意圖看起來有整合瀏覽器,而加密技術的部份沒有講太多,只說是 zero-knowledge encryption,先觀望看看...

Apple 打算把 iCloud 加密用的 Key 放到用戶端

在經過最近 FBIApple 的戰鬥中 (FBI–Apple encryption dispute),Apple 正規劃把 iCloud 加密所使用的 key 放到用戶端裝置上,而非放在伺服器端:「Apple to Hand iCloud Encryption Key Management to Account Holders」:

In effect, Apple is following the lead of secure cloud services such as SpiderOak which has been offering what it calls “Zero Knowledge” cloud storage. By that, SpiderOak retains no information about whatever is stored in its cloud service, nor the means of gaining access to it.

也就是加解密都放在 client 端處理,server 端只是 storage。

這類型最大的問題是 server 端沒辦法運用資料,但 iCloud 的確可以放掉這些功能 (搜尋之類的),純粹當 storage 使用,藉以讓使用者自己裝置保護。

而蘋果在使用者的裝置上把類似於 HSM 的系統做的頗強大... 不知道 Android 有沒有機會也跟進。(雖然我自己是用 Apple 家的東西...)

Google 發表計算網頁真實性的演算法 (Knowledge-Based Trust)

Slashdot 上看到 Google 發表了計算網頁真實性的演算法,Knowledge-Based Trust (KBT):「Google Wants To Rank Websites Based On Facts Not Links」,原始的論文 PDF 檔案可以在「Knowledge-Based Trust: Estimating the Trustworthiness of Web Sources」這邊取得。

論文本身的原理不難懂 (其實方法相當有趣),主要是給出了三個貢獻。

首先是能夠區分是取出資訊的方法有問題 (extract 的演算法不夠好),或是網站本身就給出錯誤的資訊:

Our main contribution is a more sophisticated probabilistic model, which can distinguish between two main sources of error: incorrect facts on a page, and incorrect extractions made by an extraction system.

第二個則是在效能上的改善:

Our second contribution is a new method to adaptively decide the granularity of sources to work with: if a specific webpage yields too few triples, we may aggregate it with other webpages from the same website. Conversely, if a website has too many triples, we may split it into smaller ones, to avoid computational bottlenecks (Section 4).

第三個則是提出好的分散式演算法,可以螞蟻雄兵計算出來:

The third contribution of this paper is a detailed, large-scale evaluation of the performance of our model.

KBT 並不是要取代 PageRank,而是跟 PageRank 互相配合,可以有效打擊內容農場 (Content farm) 這類網站,畢竟 PageRank 的假設在一般的狀況下是有邏輯的。

在「High PageRank but low KBT (top-left corner)」這段講到了這件事情:

We consider the 15 gossip websites listed in [16]. Among them, 14 have a PageRank among top 15% of the websites, since such websites are often popular. However, for all of them the KBT are in the bottom 50%; in other words, they are considered less trustworthy than half of the websites. Another kind of websites that often get low KBT are forum websites.

再找時間細讀其他類似的演算法...