GitHub 支援 SSH 使用 Security Key 了

GitHub 宣佈支援使用 security key 的 SSH key 操作了:「Security keys are now supported for SSH Git operations」。

也就是需要 SSH key + security key 才有辦法認證,只有拿到 SSH key 或是 security key 都是沒有辦法認證過。

目前官方支援 ecdsa-sked25519-sk

Now you can use two additional key types: ecdsa-sk and ed25519-sk, where the “sk” suffix is short for “security key.”

不過在 Ubuntu 20.04 下用預設的系統只能支援 ecdsa-sk,因為 ed25519-sk 會遇到類似「ed25519 problem with libressl」這邊的問題,就算你用的是 OpenSSL

然後生完 key 後在 ~/.ssh/config 裡面指定對 github.com 使用這把 key:

Host github.com
    IdentityFile ~/.ssh/id_ecdsa_sk

接下來操作的時候就會需要碰一下 security key 了。

Twitter 的 MFA 可以加入多支 YubiKey 了

我手上有好幾隻 YubiKey,目前幾個有在用的服務都有支援同時綁定多組 U2F/WebAuthn 的能力 (像是 FacebookGitHub)。

Twitter 一開始推出的時候也可以支援多組,但在去年 2020 年八月的時候發現這個功能被拔掉,只能放一把進去。

我自己開了一張 ticket 定時回頭看一下有沒有修正,剛剛定期回顧發現這個功能被加回來了,而且官方的文件上也加上去了:「How to use two-factor authentication」。

翻了一下 Internet Archive 上的資料,看起來是 3/113/16 中間更新文件的...

手上有多把 security key 的人也可以處理一下。

還原被碼掉的 PEM 資訊 (SSH RSA key)

在「Recovering a full PEM Private Key when half of it is redacted」這邊看到的,起因是 _SaxX_ 幫客戶做滲透測試時找到客戶公開在網路上的 SSH key,然後他就碼掉一部分貼出來:

原圖是這樣,接下來就開始被還原 XD

首先是 OCR 的過程,被稱為是整個還原過程最難的一部分 (哭爸啊):

Ironically, this was the hardest part of the challenge. It took the longest time of all the steps and was the easiest to make errors in.

接下來就是解讀 PEM 檔的格式,可以藉此得到裡面的參數。

然後是套公式,窮舉運算裡面的值,可以看到迴圈 kp 只算了 365537,就推算出可能的 p

e = 65537
q = 0xc28871e8714090e0a33327b88acc57eef2eb6033ac6bc44f31baeac33cbc026c3e8bbe9e0f77c8dbc0b4bfed0273f6621d24bc1effc0b6c06427b89758f6d433a02bf996d42e1e2750738ac3b85b4a187a3bcb4124d62296cb0eecaa5b70fb84a12254b0973797a1e53829ec59f22238eab77b211664fc2fa686893dda43756c895953e573fd52aa9bb41d22306135c81174a001b32f5407d4f72d80c5de2850541de5d55c19c1f817eea994dfa534b6d941ba204b306225a9e06ddb048f4e34507540fb3f03efeb30bdd076cfa22b135c9037c9e18fe4fa70cf61cea8c002e9c85e53c1eaac935042d00697270f05b8a7976846963c933dadd527227e6c45e1
dp = 0x878f7c1b9b19b1693c1371305f194cd08c770c8f5976b2d8e3cf769a1117080d6e90a10aef9da6eb5b34219b71f4c8e5cde3a9d36945ac507ee6dfe4c146e7458ef83fa065e3036e5fbf15597e97a7ba93a31124d97c177e68e38adc4c45858417abf8034745d6b3782a195e6dd3cf0be14f5d97247900e9aac3b2b5a89f33a3f8f71d27d670401ca185eb9c88644b7985e4d98a7da37bfffdb737e54b6e0de2004d0c8c425fb16380431d7de40540c02346c98991b748ebbc8aac73dd58de6f7ff00a302f4047020b6cd9098f6ba686994f5e043e7181edfc552e18bce42b3a42b63f7ccb7729b74e76a040055d397278cb939240f236d0a2a79757ba7a9f09

for kp in range(3, e):
    p_mul = dp * e - 1
    if p_mul % kp == 0:
        p = (p_mul // kp) + 1
        if isPrime(p):
            print(f"Possible p: {p}")

後面就是跑驗證確認,就被打出來了...

Akamai 也推出了 Key-Value 服務 EdgeKV

沒介紹過 Akamai 的一些架構,先講到 Akamai 的 Edge 端 Serverless 架構是 EdgeWorkers,跑的是 JavaScript:

EdgeWorkers lets developers just code — integrating into existing CI/CD workflows and enabling multiple teams to work in parallel using JavaScript. EdgeWorkers eliminates the hassle of managing compute resources and building for scale.

然後這次推出的是 EdgeKV,目前還在 Beta 版:「Serverless Storage at the Edge (EdgeKV Beta)」。

如同名字所說的,架構上 Key-Value 架構,放棄了 CAP theorem 裡面的 C,改走 Eventual Consistency:

EdgeKV uses what is known in distributing computing as an eventual consistency model to perform writes and updates. This model achieves high availability with low read latency by propagating data writes globally. The period of time it takes the system to distribute data globally is called the “inconsistency window”.

隔壁 Cloudflare Workers KV 也是 Eventual Consistency (出自「How KV works」這邊):

KV achieves this performance by being eventually-consistent. Changes are immediately visible in the edge location at which they're made, but may take up to 60 seconds to propagate to all other edge locations.

看起來算是補上競爭對手的產品線...

Dehydrated 取得憑證的預設演算法改成 secp384r1

這兩天弄 dehydrated,結果發現 v0.7.0 取得憑證的預設演算法改成 ECCsecp384r1 了:

Using EC secp384r1 as default certificate type

這會導致很多「稍微舊一點」的 client 失效 (瀏覽器與 library),不知道為什麼要預設... 目前避開的方法是強制在 /etc/dehydrated/config 內設定使用 rsa

KEY_ALGO=rsa

剛剛把公司一堆機器改上去,然後把自己的 server 也加一加...

改變 Xfce Terminal 的 Alt-Number 快速鍵功能

前陣子桌機重裝 Ubuntu,順便把桌面環境換成 Xubuntu 用看看,也把本來再用的 GNOME Terminal 換成 XfceTerminal

我的習慣會把 GNOME Terminal 的 Alt-Number (像是 Alt-1) 快速鍵改掉,因為有不少程式會吃這組快速鍵,像是 tmux 切換視窗內玻璃 (pane) 排列的 preset 以及 IRC client 在不同頻道的切換。

但 Xfce Terminal 沒有 GUI 讓你改這組快速鍵 (其他的快速鍵有,但也雷雷的,後面會提到...),翻了翻看起來只有「Disable alt-n tab shortcut in xfce-terminal?」這邊有提到,算是堪用:

~/.config/xfce4/terminal/accels.scm looked promising but my changes were undone after a restart, so I made it read-only but it turns out commenting out the relevant lines makes no difference anyway.

雖然作者有提到它改了 ~/.config/xfce4/terminal/accels.scm 沒用,我自己發現這邊的確是很 buggy,但暫時還是可以找到 workaround。

解法是直接改沒錯,但不能直接註解掉,而需要改空,也就是本來的:

(gtk_accel_path "<Actions>/terminal-window/goto-tab-1" "<Alt>-1")

不能改成:

; (gtk_accel_path "<Actions>/terminal-window/goto-tab-1" "<Alt>-1")

而是要改空:

(gtk_accel_path "<Actions>/terminal-window/goto-tab-1" "")

另外要注意,透過 GUI 修改快速鍵後,~/.config/xfce4/terminal/accels.scm 裡面的內容也會被重製,也就是 Xfce Terminal 寫入這個檔案時是直接把預設值寫進去,而非把有效值寫進去:

這點算是比較地雷的地方...

在視訊會議裡面,用肩膀的移動猜測輸入的字串

在「Determining What Video Conference Participants Are Typing from Watching Shoulder Movements」這邊看到的方法,利用視訊會議時肩膀的移動猜測輸入的字串,原始的論文在「Zoom on the Keystrokes: Exploiting Video Calls for Keystroke Inference Attacks」這邊可以看到。

就論文有提到的,單就這個資訊的準確度看起來不高,看起來主要是想驗證這也是一個攻擊手法... 但馬上想到視訊會議裡如果有聲音的話,可以透過分析鍵盤的聲音攻擊,這在 2005 年的時候就有類似的手法了,而且準確率很高,不過不知道過了視訊會議軟體後會差多少:「Snooping on Text by Listening to the Keyboard」。

算是個頗特別的方法就是了...

Let's Encrypt 生了新的 Root 與 Intermediate Certificate

Let's Encrypt 弄了新的 Root Certificate 與 Intermediate Certificate:「Let's Encrypt's New Root and Intermediate Certificates」。

一方面是本來的 Intermediate Certificate 也快要要過期了,另外一方面是要利用 ECDSA 降低傳輸時的頻寬成本:

On Thursday, September 3rd, 2020, Let’s Encrypt issued six new certificates: one root, four intermediates, and one cross-sign. These new certificates are part of our larger plan to improve privacy on the web, by making ECDSA end-entity certificates widely available, and by making certificates smaller.

本來有 Let's Encrypt Authority {X1,X2,X3,X4} 四組 Intermediate Certificate,都是 RSA 2048 bits。

其中 X1 與 X2 差不多都到期了 (cross-signed 的已經過了,自家 ISRG Root X1 簽的剩不到一個月),不過這兩組已經沒在用了,這次就不管他了。

而 X3 與 X4 這兩組則是明年到期,會產生出新的 Intermediate Certificate,會叫做 R3 與 R4,跟之前一樣會被自家 ISRG Root X1 簽,以及 IdenTrust DST Root CA X3 簽:

For starters, we’ve issued two new 2048-bit RSA intermediates which we’re calling R3 and R4. These are both issued by ISRG Root X1, and have 5-year lifetimes. They will also be cross-signed by IdenTrust. They’re basically direct replacements for our current X3 and X4, which are expiring in a year. We expect to switch our primary issuance pipeline to use R3 later this year, which won’t have any real effect on issuance or renewal.

然後是本次的重頭戲,會弄出一個新的 Root Certificate,叫做 ISRG Root X2,以及兩個 Intermediate Certificate,叫做 E1 與 E2:

The other new certificates are more interesting. First up, we have the new ISRG Root X2, which has an ECDSA P-384 key instead of RSA, and is valid until 2040. Issued from that, we have two new intermediates, E1 and E2, which are both also ECDSA and are valid for 5 years.

主要的目的就是降低 TLS 連線時的 bandwidth,這次的設計預期可以降低將近 400 bytes:

While a 2048-bit RSA public key is about 256 bytes long, an ECDSA P-384 public key is only about 48 bytes. Similarly, the RSA signature will be another 256 bytes, while the ECDSA signature will only be 96 bytes. Factoring in some additional overhead, that’s a savings of nearly 400 bytes per certificate. Multiply that by how many certificates are in your chain, and how many connections you get in a day, and the bandwidth savings add up fast.

另外一個特別的修改是把名字改短 (把「Let's Encrypt Authority」拿掉),也是為了省傳輸的成本:

As an aside: since we’re concerned about certificate sizes, we’ve also taken a few other measures to save bytes in our new certificates. We’ve shortened their Subject Common Names from “Let’s Encrypt Authority X3” to just “R3”, relying on the previously-redundant Organization Name field to supply the words “Let’s Encrypt”. We’ve shortened their Authority Information Access Issuer and CRL Distribution Point URLs, and we’ve dropped their CPS and OCSP urls entirely. All of this adds up to another approximately 120 bytes of savings without making any substantive change to the useful information in the certificate.

這個部份讓我想到之前寫的「省頻寬的方法:終極版本...」這篇,裡面提到 AWS 自家的 SSL Certificate 太胖,改用 DigiCert 的反而可以省下不少錢 XDDD

另外也提到了這次 cross-sign 的部份是對 ECDSA Root Certificate 簽 (ISRG Root X2),而不是對 ECDSA Intermediate Certificate 簽 (E1 與 E2),主因是不希望多一次切換的轉移期:

In the end, we decided that providing the option of all-ECDSA chains was more important, and so opted to go with the first option, and cross-sign the ISRG Root X2 itself.

這算是蠻重要的進展,看起來各家 client 最近應該都會推出新版支援。

NIST 對密碼學演算法建議的長度 (2020 版)

在「Comparing SSH Encryption Algorithms - RSA, DSA, ECDSA, or EdDSA?」這邊一路翻到「Keylength - NIST Report on Cryptographic Key Length and Cryptoperiod (2020)」這篇,裡面引用的是 NIST 的「NIST Special Publication 800-57 Part 1 Revision 5」。

在 NIST 的文件裡面,不同的演算法散落在不同地方,Keylength 整理起來後比較方便看。

想要特別拉出來講是因為看到 RSA 2048 bits 被放到 112 這個等級 (Security Strength),我一直以為是 128,不過查了一下發現好像以前是就 112 了...

把 SSH Key 放進 Secure Enclave 裡保護

看到 Secretive 這個專案,是利用蘋果的 Secure Enclave 機制,把 SSH private key 放進去在裡面進行運算,避免 private key 檔案被惡意程式讀取就洩漏出去了。

從 Secure Enclave 的介紹頁面可以看到這個需要有 T1 或是 T2 晶片才有 Secure Enclave 功能:

Mac computers that contain the T1 chip or the Apple T2 Security Chip

而從 Apple Silicon 這邊可以看到 Apple T1 chip 是 2016 年後的機種引入的:

The Apple T1 chip is an ARMv7 SoC (derived from the processor in S2 SiP) from Apple driving the System Management Controller (SMC) and Touch ID sensor of the 2016 and 2017 MacBook Pro with Touch Bar.

然後對於沒有 Secure Enclave 的古董機,可以透過有支援 smart card 的硬體掛上去,像是 YubiKey

For Macs without Secure Enclaves, you can configure a Smart Card (such as a YubiKey) and use it for signing as well.

照著他講的建議去翻了「YubiKey Smart Card Deployment Guide」這邊的資料,看起來 YubiKey 在 4 系列之後就有產品支援 Smart Card 了,不過要注意純 U2F 的版本沒支援。