Let's Encrypt 生了新的 Root 與 Intermediate Certificate

Let's Encrypt 弄了新的 Root Certificate 與 Intermediate Certificate:「Let's Encrypt's New Root and Intermediate Certificates」。

一方面是本來的 Intermediate Certificate 也快要要過期了,另外一方面是要利用 ECDSA 降低傳輸時的頻寬成本:

On Thursday, September 3rd, 2020, Let’s Encrypt issued six new certificates: one root, four intermediates, and one cross-sign. These new certificates are part of our larger plan to improve privacy on the web, by making ECDSA end-entity certificates widely available, and by making certificates smaller.

本來有 Let's Encrypt Authority {X1,X2,X3,X4} 四組 Intermediate Certificate,都是 RSA 2048 bits。

其中 X1 與 X2 差不多都到期了 (cross-signed 的已經過了,自家 ISRG Root X1 簽的剩不到一個月),不過這兩組已經沒在用了,這次就不管他了。

而 X3 與 X4 這兩組則是明年到期,會產生出新的 Intermediate Certificate,會叫做 R3 與 R4,跟之前一樣會被自家 ISRG Root X1 簽,以及 IdenTrust DST Root CA X3 簽:

For starters, we’ve issued two new 2048-bit RSA intermediates which we’re calling R3 and R4. These are both issued by ISRG Root X1, and have 5-year lifetimes. They will also be cross-signed by IdenTrust. They’re basically direct replacements for our current X3 and X4, which are expiring in a year. We expect to switch our primary issuance pipeline to use R3 later this year, which won’t have any real effect on issuance or renewal.

然後是本次的重頭戲,會弄出一個新的 Root Certificate,叫做 ISRG Root X2,以及兩個 Intermediate Certificate,叫做 E1 與 E2:

The other new certificates are more interesting. First up, we have the new ISRG Root X2, which has an ECDSA P-384 key instead of RSA, and is valid until 2040. Issued from that, we have two new intermediates, E1 and E2, which are both also ECDSA and are valid for 5 years.

主要的目的就是降低 TLS 連線時的 bandwidth,這次的設計預期可以降低將近 400 bytes:

While a 2048-bit RSA public key is about 256 bytes long, an ECDSA P-384 public key is only about 48 bytes. Similarly, the RSA signature will be another 256 bytes, while the ECDSA signature will only be 96 bytes. Factoring in some additional overhead, that’s a savings of nearly 400 bytes per certificate. Multiply that by how many certificates are in your chain, and how many connections you get in a day, and the bandwidth savings add up fast.

另外一個特別的修改是把名字改短 (把「Let's Encrypt Authority」拿掉),也是為了省傳輸的成本:

As an aside: since we’re concerned about certificate sizes, we’ve also taken a few other measures to save bytes in our new certificates. We’ve shortened their Subject Common Names from “Let’s Encrypt Authority X3” to just “R3”, relying on the previously-redundant Organization Name field to supply the words “Let’s Encrypt”. We’ve shortened their Authority Information Access Issuer and CRL Distribution Point URLs, and we’ve dropped their CPS and OCSP urls entirely. All of this adds up to another approximately 120 bytes of savings without making any substantive change to the useful information in the certificate.

這個部份讓我想到之前寫的「省頻寬的方法:終極版本...」這篇,裡面提到 AWS 自家的 SSL Certificate 太胖,改用 DigiCert 的反而可以省下不少錢 XDDD

另外也提到了這次 cross-sign 的部份是對 ECDSA Root Certificate 簽 (ISRG Root X2),而不是對 ECDSA Intermediate Certificate 簽 (E1 與 E2),主因是不希望多一次切換的轉移期:

In the end, we decided that providing the option of all-ECDSA chains was more important, and so opted to go with the first option, and cross-sign the ISRG Root X2 itself.

這算是蠻重要的進展,看起來各家 client 最近應該都會推出新版支援。

NIST 對密碼學演算法建議的長度 (2020 版)

在「Comparing SSH Encryption Algorithms - RSA, DSA, ECDSA, or EdDSA?」這邊一路翻到「Keylength - NIST Report on Cryptographic Key Length and Cryptoperiod (2020)」這篇,裡面引用的是 NIST 的「NIST Special Publication 800-57 Part 1 Revision 5」。

在 NIST 的文件裡面,不同的演算法散落在不同地方,Keylength 整理起來後比較方便看。

想要特別拉出來講是因為看到 RSA 2048 bits 被放到 112 這個等級 (Security Strength),我一直以為是 128,不過查了一下發現好像以前是就 112 了...

把 SSH Key 放進 Secure Enclave 裡保護

看到 Secretive 這個專案,是利用蘋果的 Secure Enclave 機制,把 SSH private key 放進去在裡面進行運算,避免 private key 檔案被惡意程式讀取就洩漏出去了。

從 Secure Enclave 的介紹頁面可以看到這個需要有 T1 或是 T2 晶片才有 Secure Enclave 功能:

Mac computers that contain the T1 chip or the Apple T2 Security Chip

而從 Apple Silicon 這邊可以看到 Apple T1 chip 是 2016 年後的機種引入的:

The Apple T1 chip is an ARMv7 SoC (derived from the processor in S2 SiP) from Apple driving the System Management Controller (SMC) and Touch ID sensor of the 2016 and 2017 MacBook Pro with Touch Bar.

然後對於沒有 Secure Enclave 的古董機,可以透過有支援 smart card 的硬體掛上去,像是 YubiKey

For Macs without Secure Enclaves, you can configure a Smart Card (such as a YubiKey) and use it for signing as well.

照著他講的建議去翻了「YubiKey Smart Card Deployment Guide」這邊的資料,看起來 YubiKey 在 4 系列之後就有產品支援 Smart Card 了,不過要注意純 U2F 的版本沒支援。

Amazon Redshift 會自動在背景重新排序資料以增加效能

Amazon Redshift 的新功能,會自動在背景重新排序資料以增加效能:「Amazon Redshift introduces Automatic Table Sort, an automated alternative to Vacuum Sort」。

版本要到更新到 1.0.11118,然後預設就會打開:

This feature is available in Redshift 1.0.11118 and later.

Automatic table sort is now enabled by default on Redshift tables where a sort key is specified.

重新排序的運算會在背景處理,另外帶一些行為學習分析:

Redshift runs the sorting in the background and re-organizes the data in tables to maintain sort order and provide optimal performance. This operation does not interrupt query processing and reduces the compute resources required by operating only on frequently accessed blocks of data. It prioritizes which blocks of table to sort by analyzing query patterns using machine learning.

算是丟著讓他跑就好的東西,升級上去後可以看一下 CloudWatch 的報告,這邊沒有特別講應該是還好... XD

柏林鑰匙

Daily Hacker News 上看到「Berlin key」這個東西,用機械結構就可以強迫使用者一定要鎖門的鑰匙。

門平常都是上鎖的,要解鎖要先用鑰匙打開,然後從另外一邊鎖上後才能拿出來:

是個有年代的設計,但現在在柏林還是有不少這樣的設計:

Invented by the Berliner locksmith Johannes Schweiger, the Berlin key was massively produced by the Albert Kerfin & Co company starting in 1912. With the advent of more recent locking technologies, this kind of lock and key is becoming less common. It was estimated that 8000-10000 are still in use today in Berlin, Germany.

現代則是用自動門的門禁來管制,但這個設計還是很有趣...

破 reCAPTCHA 的 Buster

在「用 Google 的 Speech Recognition API 破 Google 的 reCAPTCHA」與「reCAPTCHA 與語音辨識:以子之矛,攻子之盾」都提過用語音辨識功能破 reCAPTCHA,現在又有一套了,而且直接在各瀏覽器的 extension 平台上架:「Buster: Captcha Solver for Humans」。

說明可以看到一樣是透過聲音的部份辨識:

Buster is a browser extension which helps you to solve difficult captchas by completing reCAPTCHA audio challenges using speech recognition. Challenges are solved by clicking on the extension button at the bottom of the reCAPTCHA widget.

除了安裝很簡單以外,設定也弄得很簡單,這個套件支援多種不同語音辨識 API,包括 GoogleMicrosoft 以及 IBM 的服務,只要在套件的設定頁輸入 API key 就可以了...

另外剛好也跟 reCAPTCHA 有關,在 Hacker News 上的「Google's Captcha in Firefox vs. in Chrome (grumpy.website)」看到 Google Chrome 與 Mozilla Firefox 在跑 reCAPTCHA 的不同之處 (Chrome 的流程順很多,Firefox 卡很多),不過我覺得證據還有點弱,需要再看其他的測試...

另外裡面有提到一些奇怪的東西,像是 W3C 的替代方案 (這個組織提的東西...):「Inaccessibility of CAPTCHA」,找時間來研究一下...

實際比較 Linode 的 Dedicated 主機與 AWS 的 c5.*

先前有提到 Linode 出了 Dedicated 主機:「Linode 推出 Dedicated CPU Instances」,現在找機會測試看看,拿了 Linode 的 Dedicated (4GB) 與 AWSc5.large 比較,同樣都是 2 vCPU 與 4GB RAM。

這邊用了 n-st/nenchOpenSSL 的 speed (包括了 aes、md5、rsa、sha1 與 sha256) 測試,我把結果都貼到這邊:「Linode (Dedicated 4GB) v.s. AWS (c5.large)」。

可以看到在 CPU 方面主要的差異是 Linode 用的是 AMD,而 AWS 用的是 Intel,所以就會有蠻多不同的數字表現...

如果仔細看 OpenSSL 的測試數據,可以看到不同演算法的差異還蠻大的,馬上可以想到的應該是硬體加速方式與 cache 架構差異造成的:

  • 在 cipher 類的測試我只測了 AES (目前的主流),小的 block (16/64/256 bytes) 時 AMD 會輸一些,但大的 block (1024/8192/16384 bytes) 反而會贏不少。
  • 在 hash 類的測試中,跑 MD5 時 Linode 則是輸一些,但 SHA1 反而是贏一些,然後 SHA256 時效能好到爆炸贏了一倍 XDDD
  • 在 public key 類的測試我測了 RSA,則是 Linode 輸的蠻慘的...

如果考慮到價位大約只有 AWS 的一半,應該是還不錯...