在 EC2 上面跑 Lizzie + KataGo

我用 Packer 包了一個將 Lizzie (界面) + KataGo (引擎) 打包成 Amazon EC2 AMI 的設定:「packer-katago」。

這個組合應該是目前圍棋棋手最常拿來分析棋譜的工具,與之前常用的 Lizzie + Leela Zero 的差異在於 KataGo 可以分析勝率與目數,而 Leela Zero 則只能分析勝率。(參考之前寫的「用更少訓練時間的 KataGo」這篇)

早期的 KataGo 強度還沒有很強,一般還是會與 Leela Zero 交叉換著分析,但最近幾個版本的強度比之前好很多,目前看起來已經超過 Leela Zero 了 (可以參考 CGOS Whole Period Ratings for 19x19 Board 這邊列出來的排名),另外就 YouTube 上看起來,蠻多棋手應該都是改用 KataGo 了...

不過不管是 Leela Zero 還是 KataGo 都需要夠強的 GPU 運算,之前就算用 GTX 1080 Ti 也還是覺得不夠快,就丟到 AWS 上面用看看,順便練一下手,熟悉 Packer 怎麼用。

我是設計成用 IceWM + VNC,連進去後左下的選單裡面就會有 Lizzie 可以選:

第一次跑起來會比較久,我在 p3.2xlarge 的機器上大約要等個三四分鐘,然後就會出現數字了:

看了一下運算的速度還不錯,用 spot instance 開的話,成本上應該還可以接受 (剛剛的 p3.2xlarge 是 USD$0.918/hr)。

用更少訓練時間的 KataGo

最近開始在不同的地方會看到 KataGo 這個名字 (TwitterYouTube 上都有看到),翻了一下資料發現是在訓練成本上有重大突破,依照論文的宣稱快了五十倍...

在第一次跑的時候,只用了 35 張 V100 跑七天就有 Leela Zero 第 130 代的強度:

The first serious run of KataGo ran for 7 days in Februrary 2019 on up to 35xV100 GPUs. This is the run featured in the paper. It achieved close to LZ130 strength before it was halted, or up to just barely superhuman.

而第二次跑的時候用了 28 張 V100 跑 20 blocks 的訓練,跑了 19 天就已經超越 Facebook 當初提供的 ELFv2 版本,而對應到 Leela Zero 大約是第 200 代左右的強度 (要注意的是在 Leela Zero 這邊已經是用 40 blocks 的結構訓練了一陣子了):

Following some further improvements and much-improved hyperparameters, KataGo performed a second serious run in May-June a max of 28xV100 GPUs, surpassing the February run after just three and a half days. The run was halted after 19 days, with the final 20-block networks reaching a final strength slightly stronger than LZ-ELFv2! (This is Facebook's very strong 20-block ELF network, running on Leela Zero's search architecture). Comparing to the yet larger Leela Zero 40-block networks, KataGo's network falls somewhere around LZ200 at visit parity, despite only itself being 20 blocks.

從論文裡面可以看到,跟 Leela Zero 一樣是逐步提昇 (應該也是用 Net2Net),而不是一開始就拉到 20x256:

In KataGo’s main 19-day run, (b, c) began at (6, 96) and switched to (10, 128), (15, 192), and (20, 256), at roughly 0.75 days, 1.75 days, and 7.5 days, respectively. The final size approximately matches that of AlphaZero and ELF.

訓練速度上會有這麼大的改善,分成兩個類型,一種是一般性的 (在「Major General Improvements」這章),另外一類是特定於圍棋領域的改進 (在「Major Domain-Specific Improvements」這章)。

在 Leela Zero 的 issue tracking 裡面也可以看到很多關於 KataGo 的消息,看起來作者也在裡面一起討論,應該會有一些結果出來...