Brendan Gregg 加入 Intel

先前有提到 Brendan Gregg 離開了 Netflix 的事情:「Brendan Gregg 離開 Netflix」,剛剛看到他發表他去 Intel 的消息:「Brendan@Intel.com」。

看起來是任何跟 performance 有關的都可以碰,但主力會放在跟 cloud 相關的產品線上:

I'm thrilled to be joining Intel to work on the performance of everything, apps to metal, with a focus on cloud computing.

不知道起頭會碰什麼東西,也許先花幾個月熟悉?

用 objdump 學到的一些東西...

Hacker News 首頁上看到「Hand-optimizing the TCC code generator (briancallahan.net)」這則,原始文章在「Hand-optimizing the TCC code generator」這邊。

主要是在文章內看到 objdump 這個東西,作者用這兩個指令看組語:

tcc -c true.c
objdump -d true.o

另外同樣道理也可以用 gcc -c true.cGCC 轉出來的版本。

倒出來的組語是 AT&T 語法,但我熟悉的是 Intel 語法,對我的直覺上需要習慣... 另外我看了一下 GCC 編出來的組語:

0000000000000000 <main>:
   0:   f3 0f 1e fa             endbr64 
   4:   55                      push   %rbp
   5:   48 89 e5                mov    %rsp,%rbp
   8:   b8 00 00 00 00          mov    $0x0,%eax
   d:   5d                      pop    %rbp
   e:   c3                      retq

第一行的那個 endbr64 指令沒看過,查一下發現原來是 Intel 在 CPU 層設計出來的安全機制,標示這個地方可以被 indirect call 進來:「What does the endbr64 instruction actually do?」。

至於文章裡面主要提到的 mov $0x0, %eax 可以用 xor %eax, %eax 代替 (或是 sub %eax, %eax) 算是很久前就會的東西了...

從三角函數 cosine 的實做問題學一些週邊知識...

前幾天在 Hacker News 上看到「Implementing Cosine in C from Scratch (2020) (austinhenley.com)」這篇 2020 的文章,原文是「Implementing cosine in C from scratch」,裡面內在講自己刻三角函數的 cosine 所遇到的一些嘗試。

cosine 是很基本的函數,所以可以使用的地方很多。另外一方面,也因為他不是那麼直覺就可以實做出來,在現代的實做裡面其實藏了超多細節...

不過真的有趣的是在翻 Hacker News 上的討論時陸陸續續翻其他的資料看到的知識。

第一個看到的是 Intel 對於 FPU-based 指令集內的 FSIN 因為 π 的精度不夠而導致誤差超大 (尤其是在 0 點附近的時候):「Intel Underestimates Error Bounds by 1.3 quintillion」,然後 AMD 是「相容」到底,所以一樣慘:「Accuracy of FSIN and other x87 trigonometric instructions on AMD processors」。

這個就是有印象,但是太久沒有提到就會忘記...

第二個是 musl libc 裡的 cosine 實做 (看註解應該是從 FreeBSD 的 libc 移植過來的?):「__cos.c\math\src」與「cos.c\math\src」(話說 cgit 在 html 內 title 的內容對路徑的表達方式頗有趣,居然是反過來放...)。

拆開的部份是先將範圍限制在 [-\pi/4, \pi/4] 後 (這個部份看起來是透過 __rem_pio2.c 處理),再丟進公式實際運算。

另外帶出來第三個知識,查資料的時候翻到 binary64 (這也是 C 語言裡面的 double) 與 binary128 的差異:

而大家很常拿來惡搞的 double double 則是利用兩個 double 存放,形式是 v = head + tail,利用不同的 exponent 表示來不同部份的值,以提高經度:

A common software technique to implement nearly quadruple precision using pairs of double-precision values is sometimes called double-double arithmetic.

不過這樣的精確度只能到 106 bits,雖然跟 binary128 能達到的 113 bits 相比低了一些,但在大多數的情況下也還算夠用:

Using pairs of IEEE double-precision values with 53-bit significands, double-double arithmetic provides operations on numbers with significands of at least[4] 2 × 53 = 106 bits (...), only slightly less precise than the 113-bit significand of IEEE binary128 quadruple precision.

立端科技的 IIoT-I530

因為工作的關係,所以會關注一些特殊的硬體,但好像暫時找不到地方放,就丟在 blog 上面記錄好了...

這次看到的是支援一堆 PoE+ 的機器:「Tiger Lake-U system features dual 2.5GbE and six PoE+ ports」。

除了 PoE+ 以外另外有 mSATASATA 支援,然後還有一堆 M.2 的界面可以接 (好像是走 PCIe):

Lanner’s “IIoT-I530” embedded PC runs Linux on an 11th Gen U-series CPU and supplies with up to 64GB RAM, 2x 2.5GbE, 6x PoE+, 2x COM, 4x USB 3.0, 2x HDMI, 3x M.2, SATA, mSATA, and DIO.

來看 Intel + Varnish 的單機 500Gbps 的 PR 新聞稿

在「Varnish Software Achieves 500Gbps Throughput Per Server for UHD Video Content」這邊看到 PR 稿,由 IntelVarnish 合作,宣稱達到單機 500Gbps 的 throughput 了:

According to Varnish Software, the following were the outcomes of the test:

  • 509.7 Gbps live-linear throughput, using a dual-processor configuration
  • 487.2 Gbps video-on-demand throughput, using a dual-processor configuration

白皮書在「Delivering up to 500 Gbps Throughput for Next-Gen CDNs」這頁可以用個資交換下載,不過用搜尋引擎找一下可以發現 Intel 那邊有放出 PDF (但不確定兩邊給的是不是同一份):「Delivering up to 500 Gbps Throughput for Next-Gen CDNs」。

單 CPU 的伺服器是四個 100Gbps 界面接出來,雙 CPU 的伺服器是八個 (這邊 SUT 是 system under test 的縮寫):

These client systems were connected to the CDN servers using 100 GbE links through a switch; 4x100 GbE connections for the single-processor SUT, and 8x100 GbE for the dualprocessor SUT. Testing was done using Wrk, a widely recognized open-source HTTP(S) benchmarking tool.

不過如果實際看圖會發現伺服器是兩個 100Gbps (單 CPU) 與四個 100Gbps (雙 CPU),然後 wrk 也吃了兩個或是四個 100Gbps:

在白皮書最後面也有提到測試的配置,都是在 Ubuntu 20.04 上面跑,單 CPU 用的是兩張 Intel 的 100Gbps 網卡,雙 CPU 的用的是四張 Mellanox 的 100Gbps 網卡:

3rd generation Intel Xeon Scalable testing done by Intel in September 2021. Single processor SUT configuration was based on the Supermicro SMC 110P-WTR-TNR single socket server based on Intel® Xeon® Platinum 8380 processor (microcode: 0xd000280) with 40 cores operating at 2.3 GHz. The server featured 256 GB of RAM. Intel® Hyper-Threading Technology was enabled, as was Intel® Turbo Boost Technology 2.0. Platform controller hub was the Intel C620. NUMA balancing was enabled. BIOS version was 1.1. Network connectivity was provided by two 100 GbE Intel® Ethernet Network Adapters E810. 1.2 TB of boot storage was available via an Intel SSD. Application storage totaled 3.84TB per drive and was provided by 8 Intel P5510 SSDs. The operating system was Ubuntu Linux release 20.04 LTS with kernel 5.4.0-80 generic. Compiler GCC was version 9.3.0. The workload was wrk/master (April 17, 2019), and the version of Varnish was varnishplus-6.0.8r3. Openssl v1.1.1h was also used. All traffic from clients to SUT was encrypted via TLS.

3rd generation Intel Xeon Scalable testing done by Intel in September 2021. Dual processor SUT configuration was based on the Supermicro SMC 22OU-TNR dual socket server based on Intel® Xeon® Platinum 8380 processor (microcode: 0xd000280) with 40 cores operating at 2.3 GHz. The server featured 256 GB of RAM. Intel® Hyper-Threading Technology was enabled, as was Intel® Turbo Boost Technology 2.0. Platform controller hub was the Intel C620. NUMA balancing was enabled. BIOS version was 1.1. Network connectivity was provided by four 100 GbE Mellanox MCX516A-CDAT adapters. 1.2 TB of boot storage was available via an Intel SSD. Application storage totaled 3.84TB per drive and was provided by 12 Intel P5510 SSDs. The operating system was Ubuntu Linux release 20.04 LTS with kernel 5.4.0-80- generic. Compiler GCC was version 9.3.0. The workload was wrk/master (April 17, 2019), and the version of Varnish was varnish-plus6.0.8r3. Openssl v1.1.1h was also used. All traffic from clients to SUT was encrypted via TLS.

不過馬上就會滿頭問號,四張 100Gbps 是怎麼跑到 500Gbps 的頻寬...

這份 PR 馬上就讓人想到 Netflix 先前放出來的投影片 (先前有在「Netflix 在單機服務 400Gbps 的影音流量」這篇提到),在 Netflix 的投影片裡面有提到他們在 Intel 平台上面受限於記憶體的頻寬,整台機器只能跑到 230Gbps。

另外一種猜測是,如果 Intel 與 Varnish 宣稱的 500Gbps 是算 switch 上的總流量 (有這樣算的嗎,你是 Juniper 嗎...),那這邊的 500Gbps 換算回去差不多就是減半 (還很客氣的沒把 cache 沒中需要去 origin server 拉資料的流量扣掉),跟 Netflix 在 FreeBSD 上跑出來的結果差不多啊...

坐等反駁 XDDD

在 Linux (Ubuntu) 上跑透過 QEMU 跑 Windows/Mac/Linux 的工具

Hacker News Daily 上看到的工具:「Quickly create and run optimised Windows, macOS and Linux desktop virtual machines.」,對應的討論在「Quickemu: Quickly create and run optimised Win-10,11/macOS/Linux on Linux (github.com/wimpysworld)」這邊可以看到,可以減少自己要設定一堆 QEMU 參數。

雖然專案是支援多系統,但其實 Microsoft WindowsLinux 的部份在其他虛擬軟體都很簡單 (像是用 VirtaulBox),大家馬上會注意到的重點還是 macOS 的部份,如果有自己弄過就會知道這東西有夠難裝的,而且跨版本有不同的安裝方式...

目前 Quickemu 支援四個版本:

Supported macOS releases:

  • High Sierra
  • Mojave
  • Catalina (Recommended)
  • Big Sur

然後可以看到幾乎所有目前能支援的功能都有設定上去了,包括 VirtIO 與 USB 的部份。

然後一些經典的問題,像是 Big Sur 的音源問題還是沒解:

Full Duplex audio works on macOS High Sierra, Mojave and Catalina.

  • macOS Big Sur has no audio at all.

在 Hacker News 的討論串裡面有提到有很多地方沒有檢查,這會是風險:

While I appreciate the effort, and the code is very readable. I just want to give a friendly warning that these shell scripts just download random stuff from the internet and run this random stuff without checking any integrity/signature.

下面的討論另外看到個冷知識,關於蘋果故意走 HTTP 下載 recovery image 是因為 HTTPS 太複雜,在 UEFI firmware 裡面實做容易產生被攻擊的點,所以決定自己透過其他機制確認正確性:

Apple Internet recoveryOS images are served over plain http, on purpose. The macrecovery.py script used by Quickemu uses http¹, though the server supports https.

https://support.apple.com/guide/security/recoveryos-and-diagnostics-environments-sec2512a0c09/web

> When the internet recovery and diagnostic modes were added to Mac computers in 2011, it was decided that it would be better to use the simpler HTTP transport, and handle content authentication using the chunklist mechanism, rather than implement the more complicated HTTPS functionality in the UEFI firmware, and thus increase the firmwareʼs attack surface.

¹https://github.com/acidanthera/OpenCorePkg/blob/4a740c3f256e285c66ca3b65e42b60af6826d343/Utilities/macrecovery/macrecovery.py#L123

[edit] Added macrecovery.py info

另外為了避免直接在 shell script 裡面出現「神秘字串」,可以看到特別的寫法 XDDD

Took a little while to find the magic words in there: https://github.com/wimpysworld/quickemu/blob/af26f41440d63a069045660fad860c797011310a/quickemu#L351

可以想到一些用途,像是在機房裡面跑 CI 的 worker,但要注意這個搞法不符合蘋果的 EULA,現在不抓不代表以後也不會有事,請自己謹慎評估...

然後往 ARM-based 架構後應該門檻就更高了,現在還有 Intel-based 的環境可以用加減用...

Netflix 在單機服務 400Gbps 的影音流量

Hacker News 首頁上看到 NetflixEuroBSDCon 2021 上發表的投影片:「Serving Netflix Video at 400Gb/s on FreeBSD」,對應的討論則是在「Serving Netflix Video at 400Gb/s [pdf] (freebsd.org)」這邊可以翻到,投影片的作者有在上面回答一些問題。

投影片在講的應該就是 Netflix 的 Open Connect

主要是因為 Open Connect 的伺服器是放到各家 ISP 機房,在單一 IP 且單一伺服器的限制下,要想辦法壓榨出最高的效能。

硬體是 AMDEPYC,在先前的版本可以達到 240Gbps,經過分析與嘗試解決了一堆問題後,最後是在原來的 AMD 機器上跑到了 380Gbps (另外有測 ARM 以及 Intel 的數字),然後之後機房有可能會有 800Gbps 的標準,他們又要繼續煩惱...

有看到 Mellanox ConnectX-6 Dx (CX6-DX) 這個東西,看起來很有趣啊,有 200Gbps 的能力,而且可以把 TLS 的事情推到卡上面處理... 然後這家公司被 Nvidia 買走了。

另外當然也會有人問為什麼不用 Linux,作者在討論串裡面也有回答一些,有興趣的可以自己去搜一下。

Intel 與 AMD 在 RSQRTSS 的不同

看到「rr Trace Portability: Diverging Behavior of RSQRTSS in AMD vs Intel」這個,作者因為在 rr 上發現 replay 不正確,發現是 SSE 裡面的 RSQRTSS 這個指令在 IntelAMD 平台上會有不同的值出現導致的。

RSQRTSS 是計算平方根倒數,也就是計算 1 / \sqrt{x},另外比較特別的是,這個指令不保證正確性,是允許有誤差產生的。

提到平方根倒數,這個演算法更有名的應該是「反平方根快速演算法」這個用到 0x5f3759df 這個魔術數字的奇技淫巧,不過這不是這次的重點...

作者發現 RSQRTSS 在 Intel 與 AMD 平台的值不一定一樣,像是 256 的平方根導數是 1/16 (0.0625),但兩個平台跑出來不同:

On Intel Skylake I get
out = 3d7ff000, float = 0.062485

On AMD Rome I get
out = 3d7ff800, float = 0.062492

在這邊的 case 可以看出來 AMD 算的比較正確 (誤差值比較低),但都還是在 spec 允許的誤差範圍。

後來作者還發現有其他不同的指令也有類似的問題,為了解決在 rr 上可以正確 replay 的問題,他生了對應的 mapping table 來解:「Emulating AMD Approximate Arithmetic Instructions On Intel」。

苦啊... 不過這個主題還蠻有趣的。

Amazon EC2 上的一些小常識

Twitter 上看到 Laravel News 轉發了「Mistakes I've Made in AWS」這篇,講 Amazon EC2 上面的一些小常識。

在 EC2 中,T 系列的機器 (目前主要是 t2/t3/t3a/t4g) 對於開發很好用,甚至對於量還不大的 production system 也很好用,加上 Unlimited 模式可以讓你在 CPU credit 用完時付錢繼續 burst。

文章裡面有討論到,使用 T 系列機器時,常常是不怎麼需要大量 CPU 資源的情境,這時候 AMD-based 的 t3a 通常都是個還不錯的選擇,大概會比 Intel-based 的 t3 省 10% 的費用。另外如果可以接受 ARM-based 的話,t4g 也是個選項,價錢會更便宜而且在很多應用下速度會更快。不過同事有遇到 Python 上面跑起來的行為跟 x86-64-based 的不同,這點就得自己琢磨了...

另外就是目前的 EBS 預設還是會使用 gp2,而在 gp3 出來後其實大多數的情況下應該可以換過去,主要就是便宜了 20%,加上固定的 3000 IOPS。

不過也是有些情境下是不應該換的,主要是 gp2 可以 burst 到 250MB/sec,但 gp3 只給了 125MB/sec。雖然 gp3 可以加價買 throughput,但加價的費用不低,這種需求改用 gp2 應該會比較划算。

不過這邊推薦比較技術的作法,可以掛兩個 gp3 (也可以更多) 跑 RAID0 (像是在 Linux 上可以透過 mdadm 操作),這樣 IOPS 與 throughput 都應該可以拉上來...

Amazon EC2 推出 m6i 的機器

AWS 給了公告,在 Amazon EC2 上面推出了 m6iIntel-based 新機種:「New – Amazon EC2 M6i Instances Powered by the Latest-Generation Intel Xeon Scalable Processors」。

這好像是第一次看到 Intel-based 機種加上了 i 的 suffix...

這次比較大的兩個差異,與 m5 相比,多出了 m6i.32xlarge

A larger instance size (m6i.32xlarge) with 128 vCPUs and 512 GiB of memory that makes it easier and more cost-efficient to consolidate workloads and scale up applications.

另外看了一下 us-east-1 上的單價,看起來與 m5 系列的機器價錢一樣,但是效能提昇了 15% (然後很假掰的寫了 price/performance?):

Up to 15% improvement in compute price/performance.

單以數字看起來的話還是 m6g 系列會比較香?當然如果只有 x86-64 binary 的話看起來還是可以考慮換到 m6i 上跑...