Network Time Security 正式成為 IETF 標準

在「NTS is now an RFC」這邊看到 Network Time Security 成為 IETF 的標準了:「Network Time Security for the Network Time Protocol」。

這個標準比較特別的是,因為 TLS 裡對 certificate 的驗證需要先有正確的時間,而導致 NTP 直接套用 TLS 會有「先有雞還是先有蛋」這樣的問題出現。這點在「8.5. Initial Verification of Server Certificates」這個章節裡面被討論到:

However, the expectation that the client does not yet have a correctly-set system clock at the time of certificate verification presents difficulties with verifying that the certificate is within its validity period, i.e., that the current time lies between the times specified in the certificate's notBefore and notAfter fields.



讀 RFC 文件時常看到會使用這組定義,甚至有些非 RFC 文件也會使用:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

這邊提到的 RFC 2119 就是 1997 年訂的「Key words for use in RFCs to Indicate Requirement Levels」這篇,以 2020 年的現在來說,這組定義已經被人熟知,用這組定義可以讓閱讀的人很輕鬆的了解條件的強制性。

剛剛在讀新的文件時發現這段文字有更新,往回查發現是針對大小寫的差異提出更新:「Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words」,主要是這兩條:

  • The words have the meanings specified herein only when they are in all capitals.
  • When these words are not capitalized, they have their normal English meanings and are not affected by this document.


The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

不過就算是 2017 年之前應該也是這樣讀就是了...

OAuth 2.0 Device Authorization Grant

看到「OAuth 2.0 Device Authorization Grant」這個變成 PROPOSED STANDARD 了,看了一下歷史是 2015 年年底的時候被提出來的,記得在前公司的時候有用這個 (當時還是 draft) 做智慧型電視上的 OAuth 認證:

The OAuth 2.0 device authorization grant is designed for Internet-connected devices that either lack a browser to perform a user-agent-based authorization or are input constrained to the extent that requiring the user to input text in order to authenticate during the authorization flow is impractical. It enables OAuth clients on such devices (like smart TVs, media consoles, digital picture frames, and printers) to obtain user authorization to access protected resources by using a user agent on a separate device.

因為這些裝置的輸入設備受限,照原來 OAuth 2.0 的方式授權,使用者體驗不會太好 (可以想像用遙控器登入 Google 或是 Facebook 帳號?),所以設計了替代的方案,讓使用者可以用手機授權 (比較常見的是透過 QR code),然後電視機再去取得 access token。

robots.txt 的標準化

雖然聽起來有點詭異,但 robots.txt 的確一直都只是業界慣用標準,而非正式標準,所以各家搜尋引擎加加減減都有一些自己的參數。

在經過這麼久以後,Google 決定推動 robots.txt 的標準化:「Formalizing the Robots Exclusion Protocol Specification」,同時 Google 也放出了他們解讀 robots.txt 的 parser:「Google's robots.txt Parser is Now Open Source」,在 GitHubgoogle/robotstxt 這邊可以取得。

目前的 draft 是 00 版,可以在 draft-rep-wg-topic-00 這邊看到,不知道其他搜尋引擎會給什麼樣的回饋...


這邊講的是因為 Let's Encrypt 所發明的 ACME 協定,可以協助自動化發憑證的協定。

剛剛看到「Automatic Certificate Management Environment (ACME)」這個頁面,上面標 PROPOSED STANDARD,但點進去的 txt 檔開頭則是 Standards Track 了:

Internet Engineering Task Force (IETF)                         R. Barnes
Request for Comments: 8555                                         Cisco
Category: Standards Track                             J. Hoffman-Andrews
ISSN: 2070-1721                                                      EFF
                                                             D. McCarney
                                                           Let's Encrypt
                                                               J. Kasten
                                                  University of Michigan
                                                              March 2019

不知道是不是兩邊不同步 (或是我對流程有誤會?),但這有一個標準文件可以參考了...

RFC 8446:TLS 1.3

看到 RFC 8446 (The Transport Layer Security (TLS) Protocol Version 1.3) 正式推出了,也就是 TLS 1.3 正式成為 IETF 的標準 (Standards Track)。

Cloudflare 寫了一篇文章「A Detailed Look at RFC 8446 (a.k.a. TLS 1.3)」描述了 TLS 1.3 的特點,有興趣的人可以看一看,尤其是 1-RTT 的部份對效能幫助很大 (0-RTT 因為 replay attack 問題,我應該暫時都不會考慮,要等到有一個合理的防禦模型出來)。

另外一個是 OpenSSL 目前最新版是 1.1.0h,當初就決定要等 TLS 1.3 正式成為標準才會出 1.1.1 (參考「OpenSSL 1.1.1 將支援 TLS 1.3」,這也熬了一年啊... 支援後會就有很多軟體可以直接套用了,可以來期待了。

保護 TLS 的 Hostname

看到「Encrypted Server Name Indication for TLS 1.3」這個,由 FastlyCloudflareApple 的人聯手推出的 draft,想要保護 TLS 連線一開始明文傳輸的 hostname 部分。看起來是透過 DNS 發佈 public key,然後使用者用這把 public key 保護 hostname 的部分...

而 DNS 的部分可以透過 DNS over TLS 或是 DNS over HTTPS 來保護,這樣讓 ISP 沒有任何資訊可以看到 hostname,把暴露的資訊再降低...


RFC 的 Feed...

想說應該有這樣的東西,就找到「」這頁,本來以為直接就是 RSS feed 了 (因為網址),一打開來發現看起來像是個網頁,結果最上面這樣說明:

Don't panic. This web page is actually a data file that is meant to be read by RSS reader programs.

馬上打開來看 page source code,果然是 XSL

<?xml-stylesheet title="CSS_formatting" type="text/css" href="css/rss.css"?>
<?xml-stylesheet title="XSL_formatting" type="text/xml" href="rss2html.xsl"?>

好久沒看到這個了,大概是十年前想要做到資料與效果分離 (client-side rendering) 的方式...

TLS 1.3 進入 Proposed Standard

最近蠻熱的一個新聞,TLS 1.3 的 draft-ietf-tls-tls13-28.txt 進入 Proposed Standard 了 (在「draft-ietf-tls-tls13-28 - The Transport Layer Security (TLS) Protocol Version 1.3」這邊可以看到歷史記錄):「Protocol Action: 'The Transport Layer Security (TLS) Protocol Version 1.3' to Proposed Standard (draft-ietf-tls-tls13-28.txt)」。

沒意外的話這就會是最終版本了。如果要看 TLS 1.2 與 TLS 1.3 的差異,看維基百科上的 Transport Layer Security - TLS 1.3 會比較清楚。

大家等很久了... 像是 OpenSSL 1.1.1 其實一部分也是在等 TLS 1.3 正式推出:(出自「Using TLS1.3 With OpenSSL」)

OpenSSL 1.1.1 will not be released until (at least) TLSv1.3 is finalised. In the meantime the OpenSSL git master branch contains our development TLSv1.3 code which can be used for testing purposes (i.e. it is not for production use).

主要還是期待非 NSA 派系的 cipher (其實幾乎都是 djb 的戰果) 與 1-RTT handshake,後續等 TLS 1.3 變成 Standard Track 應該就會被各家瀏覽器開預設值了...

End-to-End Encryption 的標準?

看到「The Messaging Layer Security (MLS) Protocol」這個被提出來的標準,還在討論中...

簡介就說明了這個標準除了標準的 E2E 外,還設計了有效率的 Group 機制:

Messaging applications are increasingly making use of end-to-end security mechanisms to ensure that messages are only accessible to the communicating endpoints, and not to any servers involved in delivering messages. Establishing keys to provide such protections is challenging for group chat settings, in which more than two participants need to agree on a key but may not be online at the same time. In this document, we specify a key establishment protocol that provides efficient asynchronous group key establishment with forward secrecy and post-compromise security for groups in size ranging from two to thousands.