沒想到會在 Hacker News 的首頁上看到這麼硬核的主題,選擇公理 (Axiom of choice,通常縮寫成 AC):「What is the Axiom of Choice?」,對應的討論在「What is the Axiom of Choice? (jaydaigle.net)」。
出自「xkcd: Set Theory」
應該是大一教集合論的時候學到的,算是一個非常重要的公設,雖然的確有些數學系統是可以假定 AC 不成立,但用起來會不太好用,主要是因為「對於集合 ,取出任意一個元素」這類用法太常出現,在沒有 AC 的情況下這件事情就不一定能操作了...
我們目前常用的數學一般是建立在 Zermelo-Fraenkel Set Theory (ZF) 這個公理系統加上 AC,簡寫變成 ZFC。而 AC 在集合論常常會被拿出來說明,主要還是因為在歷史上花了不少力氣才證明 ZF 與 AC 的相對協調性 (ZF 與 AC 不衝突),以及 ZF 與 AC 獨立性 (ZF 無法推導出 AC)。
有了 AC 後就會再解釋連續統假設 (Continuum hypothesis,簡稱 CH),也就是 與 之間存不存在一個集合 使得 。
然後再打臉一次,說明 ZFC 與 CH 的協調性 (ZFC 與 CH 不衝突),與獨立性 (ZFC 無法推導出 CH)。
當時學的時候的確是很頭痛,不過現在回頭看倒是覺得很有趣:在數學上你可以證明「某個敘述無法被證明」,這點應該是以前沒想過的...