Home » Posts tagged "execution"

7-Zip 的 RCE 安全性問題

7-Zip 被發現安全性問題 (CVE-2018-10115):「7-Zip: From Uninitialized Memory to Remote Code Execution」。而在 2018/04/30 推出的 18.05 修正了這個問題:「7-Zip 18.05」。

The vulnerability in RAR unpacking code was fixed (CVE-2018-10115).

除了修正以外,另外也開了 ASLR,對安全性會多一些防禦:

2018-03-06 - Discovery
2018-03-06 - Report
2018-04-14 - MITRE assigned CVE-2018-10115
2018-04-30 - 7-Zip 18.05 released, fixing CVE-2018-10115 and enabling ASLR on the executables.

手上有裝 7-Zip 的人要記得更新...

讀書時間:Spectre 的攻擊方式

上次寫了 Meltdown 攻擊的讀書心得 (參考「讀書時間:Meltdown 的攻擊方式」),結果後來中獎狂流鼻水,加上 Spectre 用的手法就更複雜,慢慢看的情況就拖到最近才看完... 這邊就以讀者看過 Meltdown 那篇心得的前提來描述 Spectre。

Spectre 的精華在於 CPU 支援 branch prediction 與 out-of-order execution,也就是 CPU 遇到 branch 時會學習怎麼跑,這個資訊提供給 out-of-order execution 就可以大幅提昇執行速度。可以參考以前在「CPU Branch Prediction 的成本...」提到的效率問題。

原理的部份可以看這段程式碼:

這類型程式碼常常出現在現代程式的各種安全檢查上:確認 x 沒問題後再實際將資料拉出來處理。而我們可以透過不斷的丟 x 值進去,讓 CPU 學到以為都是 TRUE,而在 CPU 學壞之後,突然丟進超出範圍的 x,產生 branch misprediction,但卻已經因為 out-of-order execution 而讓 CPU 執行過 y = ... 這段指令,進而導致 cache 的內容改變。

然後其中讓人最驚豔的攻擊,就是論文示範了透過瀏覽器的 JavaScript 就能打的讓人不要不要的...

圖片裡,上面這段是 JavaScript 程式碼,下面則是 Chrome V8JIT 後轉成的 assembly (這是 AT&T style):

可以從這段程式碼看到,他想要透過這段 JavaScript 取出本來無法存取到的祕密值 index,然後透過 probeTable 得知 cache 的變化。

在這樣的攻擊下,你就可以取得這個 process 裡可以看到的空間,甚至極端的 case 下有可能是 kernel space (配合 Meltdown 的條件)。

不過如果你不能跑 JavaScript 也沒關係,Spectre 的論文裡也提供各種變形方式提供攻擊。像是這樣的程式碼也可以被拿來攻擊:

if (false but mispredicts as true)
    read array1[R1]
read [R2]

其中 R1 是有帶有祕密值的 register,當 array[R1] 有 cache 時,讀 [R2] 就有機會比較快,而沒有 cache 時就會比較慢 (這是因為 memory bus 被佔用的關係),在這個情境下就能夠產生 timing attack:

Suppose register R1 contains a secret value. If the speculatively executed memory read of array1[R1] is a cache hit, then nothing will go on the memory bus and the read from [R2] will initiate quickly. If the read of array1[R1] is a cache miss, then the second read may take longer, resulting in different timing for the victim thread.

所以相同道理,利用乘法器被佔用的 timing attack 也可以產生攻擊:

if (false but mispredicts as true)
    multiply R1, R2
multiply R3, R4

在論文裡面提到相當多的方法 (甚至連 branch target buffers (BTB) 都可以拿來用),就麻煩去論文裡看了。現在用 cache 算是很有效的方式,所以攻擊手法主要都是透過 cache 在取得資訊。

Spectre 論文提到的 mitigation (workaround) 是透過 mfencelfence 強制程式碼的順序,但這表示 compiler 要針對所有的 branch 加上這段,對效能影響應該蠻明顯的:

In addition, of the three user-mode serializing instructions listed by Intel, only cpuid can be used in normal code, and it destroys many registers. The mfence and lfence (but not sfence) instructions also appear to work, with the added benefit that they do not destroy register contents. Their behavior with respect to speculative execution is not defined, however, so they may not work in all CPUs or system configurations.

Google 推出的 Retpoline 則是想要避免這個問題。Google 在「Retpoline: a software construct for preventing branch-target-injection」這邊詳細說明了 Retpoline 的原理與方法,採取的方向是控制 speculative execution:

However, we may manipulate its generation to control speculative execution while modifying the visible, on-stack value to direct how the branch is actually retired.

這個方式是抽換掉 jmpcall 兩個指令,以 *%r11 為例,他將 jmp *%r11call *%r11 改成 jmp retpoline_r11_trampolinecall retpoline_r11_trampoline (這邊的 jmp 指的是所有 jump 系列的指令,像是 jz 之類的):

retpoline_r11_trampoline:
  call set_up_target;
capture_spec:        
  pause;
  jmp capture_spec;
set_up_target:
  mov %r11, (%rsp); 
  ret;

藉由抽換 %rsp 內容跳回正確位置,然後也利用這樣的程式結構控制 CPU 的 speculative execution。

而在效能損失上,已經有測試報告出來了。其實並沒有像 Google 說的那麼無痛,還是會因為應用差異而有不同等級的效能損失... 可以看到有些應用其實還是很痛:「Benchmarking Linux With The Retpoline Patches For Spectre」。

下半年新出的 CPU 應該會考慮這些問題了吧,不過不知道怎麼提供解法 @_@

讀書時間:Meltdown 的攻擊方式

Meltdown 的論文可以在「Meltdown (PDF)」這邊看到。這個漏洞在 Intel 的 CPU 上影響最大,而在 AMD 是不受影響的。其他平台有零星的消息,不過不像 Intel 是這十五年來所有的 CPU 都中獎... (從 Pentium 4 以及之後的所有 CPU)

Meltdown 是基於這些前提,而達到記憶體任意位置的 memory dump:

  • 支援 µOP 方式的 out-of-order execution 以及當失敗時的 rollback 機制。
  • 因為 cache 機制造成的 side channel information leak。
  • 在 out-of-order execution 時對記憶體存取的 permission check 失效。

out-of-order execution 在大學時的計算機組織應該都會提到,不過我印象中當時只講「在確認不相干的指令才會有 out-of-order」。而現代 CPU 做的更深入,包括了兩個部份:

  • 第一個是 µOP 方式,將每個 assembly 拆成更細的 micro-operation,後面的 out-of-order execution 是對 µOP 做。
  • 第二個是可以先執行下去,如果發現搞錯了再 rollback。

像是下面的 access() 理論上不應該被執行到,但現代的 out-of-order execution 會讓 CPU 有機會先跑後面的指令,最後發現不該被執行到後,再將 register 與 memory 的資料 rollback 回來:

而 Meltdown 把後面不應該執行到 code 放上這段程式碼 (這是 Intel syntax assembly):

其中 mov al, byte [rcx] 應該要做記憶體檢查,確認使用者是否有權限存取那個位置。但這邊因為連記憶體檢查也拆成 µOP 平行跑,而產生 race condition:

Meltdown is some form of race condition between the fetch of a memory address and the corresponding permission check for this address.

而這導致後面這段不該被執行到的程式碼會先讀到資料放進 al register 裡。然後再去存取某個記憶體位置造成某塊記憶體位置被讀到 cache 裡。

造成 cache 內的資料改變後,就可以透過 FLUSH+RELOAD 技巧 (side channel) 而得知這段程式碼讀了哪一塊資料 (參考之前寫的「Meltdown 與 Spectre 都有用到的 FLUSH+RELOAD」),於是就能夠推出 al 的值...

而 Meltdown 在 mov al, byte [rcx] 這邊之所以可以成立,另外一個需要突破的地方是 [rcx]。這邊 [rcx] 存取時就算沒有權限檢查,在 virtual address 轉成 physical address 時應該會遇到問題?

原因是 LinuxOS X 上有 direct-physical map 的機制,會把整塊 physical memory 對應到 virtual memory 的固定位置上,這些位置不會再發給 user space 使用,所以是通的:

On Linux and OS X, this is done via a direct-physical map, i.e., the entire physical memory is directly mapped to a pre-defined virtual address (cf. Figure 2).

而在 Windows 上則是比較複雜,但大部分的 physical memory 都有對應到 kernel address space,而每個 process 裡面也都還是有完整的 kernel address space (只是受到權限控制),所以 Meltdown 的攻擊仍然有效:

Instead of a direct-physical map, Windows maintains a multiple so-called paged pools, non-paged pools, and the system cache. These pools are virtual memory regions in the kernel address space mapping physical pages to virtual addresses which are either required to remain in the memory (non-paged pool) or can be removed from the memory because a copy is already stored on the disk (paged pool). The system cache further contains mappings of all file-backed pages. Combined, these memory pools will typically map a large fraction of the physical memory into the kernel address space of every process.

這也是 workaround patch「Kernel page-table isolation」的原理 (看名字大概就知道方向了),藉由將 kernel 與 user 的區塊拆開來打掉 Meltdown 的攻擊途徑。

而 AMD 的硬體則是因為 mov al, byte [rcx] 這邊權限的檢查並沒有放進 out-of-order execution,所以就避開了 Meltdown 攻擊中很重要的一環。

MySQL 全系列的安全性漏洞

包含 MySQL 本家與所有從 MySQL 改出去的分支都中了,引用 Percona 的通報:「Percona Server Critical Update CVE-2016-6662」。

This is a CRITICAL update, and the fix mitigates the potential for remote root code execution.

原始的 security advisory 在「CVE-2016-6662 - MySQL Remote Root Code Execution / Privilege Escalation ( 0day )」這邊,雖然是標 0day,但發現的人在七月時就有先通報給 vendor 們讓他們有時間修正:

The vulnerability was reported to Oracle on 29th of July 2016 and triaged by the security team. It was also reported to the other affected vendors including PerconaDB and MariaDB.

Oracle 還沒修正,也就是 upstream 目前仍然是有問題的,目前得靠其他 vendor 修正:

Official patches for the vulnerability are not available at this time for Oracle MySQL server.

其中 Percona 與 MariaDB 都已經先推出修正版本了:

The vulnerabilities were patched by PerconaDB and MariaDB vendors by the end of 30th of August.

然後看了一下這個漏洞,從 SQL 指令可以做檔案操作一路打出來... 可以看到範例:

mysql> set global general_log_file = '/etc/my.cnf';
mysql> set global general_log = on;
mysql> select '
    '> 
    '> ; injected config entry
    '> 
    '> [mysqld]
    '> malloc_lib=/tmp/mysql_exploit_lib.so
    '> 
    '> [separator]
    '> 
    '> ';
1 row in set (0.00 sec)
mysql> set global general_log = off;

這下苦了...

Cisco 與 Fortinet 防火牆的 RCE 漏洞

NSA 使用這些漏洞來大量監聽企業的流量:「Leaked Exploits are Legit and Belong to NSA: Cisco, Fortinet and Snowden Docs Confirm」。

Cisco 已經確認這個安全性漏洞了,全系列包括已經停產的 Cisco PIX、上個世代的 Cisco ASA 5500 (但還有些型號還在賣),以及目前主力的 Cisco ASA 5500-X,另外還包括了安全模組系列也中獎:「Cisco Adaptive Security Appliance SNMP Remote Code Execution Vulnerability」。

  • Cisco ASA 5500 Series Adaptive Security Appliances
  • Cisco ASA 5500-X Series Next-Generation Firewalls
  • Cisco ASA Services Module for Cisco Catalyst 6500 Series Switches and Cisco 7600 Series Routers
  • Cisco ASA 1000V Cloud Firewall
  • Cisco Adaptive Security Virtual Appliance (ASAv)
  • Cisco Firepower 4100 Series
  • Cisco Firepower 9300 ASA Security Module
  • Cisco Firepower Threat Defense Software
  • Cisco Firewall Services Module (FWSM)*
  • Cisco Industrial Security Appliance 3000
  • Cisco PIX Firewalls*

標星號的是目前已經沒有在維護的產品,這次只確認受到影響,但不會更新:

Cisco Firewall Service Modules and Cisco PIX Firewalls have passed the last day of software support milestone as stated in the published End of Life (EoL) documents. Further investigations into these devices will not be performed, and fixed software will not be made available.

這次 Cisco 的安全性問題是 SNMP 的洞造成的:

Administrators are advised to allow only trusted users to have SNMP access and to monitor affected systems using the snmp-server host command.

這個洞被 NSA 用來寫 exploit 植入系統:

This flaw was included inside two NSA exploits, dubbed EPICBANANA as well as JETPLOW, which is an enhanced version of EPICBANANA, but with better persistence capabilities, Cisco's Omar Santos said in a blog post.

在 NSA 洩漏出來的文件裡可以看到 ace02468bdf13579 這個特殊辨識字串,而在受感染的樣本上也找到了這個痕跡:

而且不只是 Cisco,其他幾家也中獎了,可以參考「The NSA Leak Is Real, Snowden Documents Confirm」這邊更多的資訊 @_@

在 Python 的 pip、Nodejs 的 npm、Ruby 的 RubyGems 上面放木馬研究?

在 Python 領域裡常用 pip 安裝軟體:

$ pip install reqeusts

或是:

$ sudo pip install reqeusts

其他的平台也大致類似於這樣的動作。而在「Typosquatting programming language package managers」這篇文章裡,作者用 typo 之類的方式列出可能的名稱,像是這樣的名稱:

$ sudo pip install reqeusts

然後在這三個平台上發動攻擊,上傳了數百個套件並且觀察:

All in all, I created over 200 such packages and equipped them with a small program and uploaded them over the course of several months. The idea is to add some code to the packages that is executed whenever the package is downloaded with the installing user rights.

而這是「成果」:

Git 的安全性問題

在「Remote Code Execution in all git versions (client + server) < 2.7.1: CVE-2016-2324, CVE-2016‑2315」這邊看到歡樂的 CVE-2016-2315CVE-2016-2324,屬於 RCE 類漏洞。

Git 2.7.1 之前的所有版本都有問題,看起來由於問題過於大條,在 2016/02/06 發表的「Git v2.7.1 Release Notes」沒有標出這兩個 CVE,讓所有 vendor 有時間升級。

不過看起來 GitLab 不在被通知的 vendor 裡面,很無奈的在 CVE 公開後馬上推出新版,需要升級到最新版本:「GitLab 8.5.7 Released」。

CVE-2015-7547:getaddrinfo() 的 RCE (Remote Code Execution) 慘案

Google 寫了一篇關於 CVE-2015-7547 的安全性問題:「CVE-2015-7547: glibc getaddrinfo stack-based buffer overflow」。

Google 的工程師在找 OpenSSH 連到某台特定主機就會 segfault 的通靈過程中,發現問題不在 OpenSSH,而是在更底層的 glibc 導致 segfault:

Recently a Google engineer noticed that their SSH client segfaulted every time they tried to connect to a specific host. That engineer filed a ticket to investigate the behavior and after an intense investigation we discovered the issue lay in glibc and not in SSH as we were expecting.

由於等級到了 glibc 這種每台 Linux 都有裝的情況,在不經意的情況下發生 segfault,表示在刻意攻擊的情況下可能會很糟糕,所以 Google 投入了人力研究,想知道這個漏洞到底可以做到什麼程度:

Thanks to this engineer’s keen observation, we were able determine that the issue could result in remote code execution. We immediately began an in-depth analysis of the issue to determine whether it could be exploited, and possible fixes. We saw this as a challenge, and after some intense hacking sessions, we were able to craft a full working exploit!

在研究過程中 Google 發現 Red Hat 的人也在研究同樣的問題:「(CVE-2015-7547) - In send_dg, the recvfrom function is NOT always using the buffer size of a newly created buffer (CVE-2015-7547)」:

In the course of our investigation, and to our surprise, we learned that the glibc maintainers had previously been alerted of the issue via their bug tracker in July, 2015. (bug). We couldn't immediately tell whether the bug fix was underway, so we worked hard to make sure we understood the issue and then reached out to the glibc maintainers. To our delight, Florian Weimer and Carlos O’Donell of Red Hat had also been studying the bug’s impact, albeit completely independently! Due to the sensitive nature of the issue, the investigation, patch creation, and regression tests performed primarily by Florian and Carlos had continued “off-bug.”

攻擊本身需要繞過反制機制 (像是 ASLR),但仍然是可行的,Google 的人已經成功寫出 exploit code:

Remote code execution is possible, but not straightforward. It requires bypassing the security mitigations present on the system, such as ASLR. We will not release our exploit code, but a non-weaponized Proof of Concept has been made available simultaneously with this blog post.

技術細節在 Google 的文章裡也有提到,buffer 大小固定為 2048 bytes,但取得時有可能超過 2048 bytes,於是造成 buffer overflow:

glibc reserves 2048 bytes in the stack through alloca() for the DNS answer at _nss_dns_gethostbyname4_r() for hosting responses to a DNS query.

Later on, at send_dg() and send_vc(), if the response is larger than 2048 bytes, a new buffer is allocated from the heap and all the information (buffer pointer, new buffer size and response size) is updated.

另外 glibc 官方的 mailing list 上也有說明:「[PATCH] CVE-2015-7547 --- glibc getaddrinfo() stack-based buffer overflow」。

Apple 首次自動強制更新:NTP 安全問題

Apple 第一次的自動強制更新就給了這次的 ntpd 安全性問題 CVE-2014-9295:「Apple pushes first ever automated security update to Mac users」。

A remote unauthenticated attacker may craft special packets that trigger buffer overflows in the ntpd functions crypto_recv() (when using autokey authentication), ctl_putdata(), and configure(). The resulting buffer overflows may be exploited to allow arbitrary malicious code to be executed with the privilege of the ntpd process.

這次的問題比較刺激...

Archives