Home » Posts tagged "encryption"

所以要開始開發 CECPQ2 了...

CECPQ1Google 在研究對抗量子電腦的演算法,作為測試用的演算法,曾經在 Google Chrome 的 54 beta 版 (2016 年) 存活過一段時間,最近又開始在開發新一代的演算法 CECPQ2 了,這次會是基於 TLS 1.3 上測試:「CECPQ2」。

CECPQ2 will be moving slowly: It depends on TLS 1.3 and, as mentioned, 1.3 is taking a while. The larger messages may take some time to deploy if we hit middlebox- or server-compatibility issues. Also the messages are currently too large to include in QUIC. But working though these problems now is a lot of the reason for doing CECPQ2—to ensure that post-quantum TLS remains feasible.

目前對抗量子電腦的演算法好像都跟 Lattice 有關,找時間來補一下基礎理論... @_@

DynamoDB 可以透過 KMS 加密了...

AWSDynamoDB 可以透過 KMS 加密了:「New – Encryption at Rest for DynamoDB」。

You simply enable encryption when you create a new table and DynamoDB takes care of the rest. Your data (tables, local secondary indexes, and global secondary indexes) will be encrypted using AES-256 and a service-default AWS Key Management Service (KMS) key.

看起來不是自己的 KMS key,而是 service 本身提供的,這樣看起來是在 i/o level 加密,所以還不是 searchable encryption 的能力...

End-to-End Encryption 的標準?

看到「The Messaging Layer Security (MLS) Protocol」這個被提出來的標準,還在討論中...

簡介就說明了這個標準除了標準的 E2E 外,還設計了有效率的 Group 機制:

Messaging applications are increasingly making use of end-to-end security mechanisms to ensure that messages are only accessible to the communicating endpoints, and not to any servers involved in delivering messages. Establishing keys to provide such protections is challenging for group chat settings, in which more than two participants need to agree on a key but may not be online at the same time. In this document, we specify a key establishment protocol that provides efficient asynchronous group key establishment with forward secrecy and post-compromise security for groups in size ranging from two to thousands.


Transport-Layer Encryption 與 End-to-End Encryption 的差異

EFF 的「Transport-Layer Encryption vs End-to-End Encryption - GIF」這篇文章介紹了 Transport-Layer Encryption 與 End-to-End Encryption 的差異,最後還給了一張 GIF 說明:

其實 GIF 給的範例還蠻清楚的,在 Transport-Layer Encryption 中服務提供商可以看到原始內容 (以 GIF 內提到的例子就是 Google),而在 End-to-End Encryption 中就不行,只有傳輸雙方可以知道原始內容。

然後文章裡也提到了 Tor Messenger,可以吃現有的通訊軟體,然後在上面疊出 End-to-End Encryption。

Jeff Barr 正在努力回顧去年 re:Invent 發表的東西:Inter-Region VPC Peering

居然是在補進度 XDDD 這是去年 AWS re:Invent 發表的功能:「New – Inter-Region VPC Peering」,在去年的時候也有提到了:「AWS 總算推出跨區 VPC Peering 了...」。

不過當時不確定跨區域時怎麼處理傳輸加密 (或者沒有處理?),這邊 Jeff Barr 補充提到了一些細節:

Data that passes between VPCs in distinct regions flows across the AWS global network in encrypted form. The data is encrypted in AEAD fashion using a modern algorithm and AWS-supplied keys that are managed and rotated automatically. The same key is used to encrypt traffic for all peering connections; this makes all traffic, regardless of customer, look the same. This anonymity provides additional protection in situations where your inter-VPC traffic is intermittent.

這樣架構會簡單不少,不需要自己再疊一層確保加密這件事情 (因為當時沒翻到資料說有加密...)。

這次 PKCS #1 1.5 的 ROBOT 攻擊,Cisco 沒打算修...

1998 年就發現的 security issue 因為 workaround 也很複雜,所以不是每一家都修對方法,於是 19 年後又被爆破了。這次叫做 ROBOT:「1998 attack that messes with sites’ secret crypto keys is back in a big way」。


這次的攻擊在 client 端無法修正,只能在 server 端修正:

Do I need to update my browser?
No. This is an implementation bug in servers, there is nothing clients can do to prevent it.

如果 server 端無法盡快修正的話,想辦法避開 RSA encryption 可以躲開這個問題,而且因為現代瀏覽器都有非 RSA 的替代方案,這樣做應該都還有退路,可以維持連線的可能性:

Disable RSA encryption!
ROBOT only affects TLS cipher modes that use RSA encryption. Most modern TLS connections use an Elliptic Curve Diffie Hellman key exchange and need RSA only for signatures. We believe RSA encryption modes are so risky that the only safe course of action is to disable them. Apart from being risky these modes also lack forward secrecy.

但使用 Cisco ACE 就哭了,因為 Cisco ACE 只支援 RSA encryption,而 Cisco 官方以產品線已經關閉,不再提供維護而沒有提供更新的計畫,所以就進入一個死胡同...

不過 Cisco 自己也還在用 Cisco ACE 就是了,不在意就不會痛的感覺 XD

I have a Cisco ACE device.
Cisco informed us that the ACE product line was discontinued several years ago and that they won't provide an update. Still, we found plenty of vulnerable hosts that use these devices.

These devices don't support any other cipher suites, therefore disabling RSA is not an option. To our knowledge it is not possible to use these devices for TLS connections in a secure way.

However, if you use these products you're in good company: As far as we can tell Cisco is using them to serve the cisco.com domain.

Savitech (盛微) 的 USB 音效驅動程式會安裝 Root CA (被發了 CVE-2017-9758)

Hacker News 上看到 CERT 的「Savitech USB audio drivers install a new root CA certificate」提到 Savitech USB audio driver 會安裝自己的 Root CA:

Savitech provides USB audio drivers for a number of specialized audio products. Some versions of the Savitech driver package silently install a root CA certificate into the Windows trusted root certificate store.

出自「Inaudible Subversion - Did your Hi-Fi just subvert your PC? (原網站已經無法訪問,參考備份連結 https://archive.is/K6REr)」,CVE 編號是 CVE-2017-9758,最初是由 n3kt0n 提出的:「某單位 drivers silently install certificate in trusted root certificate authorities store [CVE-2017-9758]」:

Mitre assigned this exposure the identifier CVE-2017-9758, but was initially tracked by HITCON ZeroDay project as ZD-2017-00386.

有兩把 CA public key 被塞進去。雖然目前還沒有徵兆 private key 有外洩,但還是建議儘快移除:

There is currently no evidence that the Savitech private key is compromised. However, users are encouraged to remove the certificate out of caution. The two known certificates are:

SaviAudio root certificate #1
‎Validity: Thursday, ‎May ‎31, ‎2012 - ‎Tuesday, ‎December ‎30, ‎2036
Serial number: 579885da6f791eb24de819bb2c0eeff0
Thumbprint: cb34ebad73791c1399cb62bda51c91072ac5b050

SaviAudio root certificate #2
Validity: ‎Thursday, ‎December ‎31, ‎2015 - ‎Tuesday, ‎December ‎30, ‎2036
Serial number: ‎972ed9bce72451bb4bd78bfc0d8b343c
Thumbprint: 23e50cd42214d6252d65052c2a1a591173daace5

另外 Savitech 也放出了新版的 driver,不包含 Root CA:

Savitech has released a new driver package to address the issue. Savitech drivers version or later do not install the root CA certificate. Users still must remove any previously installed certificate manually.

看了一下說明,看起來是當時為了支援 Windows XP 而做的,但微軟已經不提供驅動程式的數位簽章了,所以就只好這樣搞...

AWS CloudHSM 支援 FIPS 140-2 Level 3 了

AWS CloudHSM 推出了一些新功能:「AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads」。

其中比較特別的是從以前只支援 Level 2 變成支援 Level 3 了:

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM.

在維基百科裡面有提到 Level 2 與 Level 3 的要求:

Security Level 2 improves upon the physical security mechanisms of a Security Level 1 cryptographic module by requiring features that show evidence of tampering, including tamper-evident coatings or seals that must be broken to attain physical access to the plaintext cryptographic keys and critical security parameters (CSPs) within the module, or pick-resistant locks on covers or doors to protect against unauthorized physical access.

In addition to the tamper-evident physical security mechanisms required at Security Level 2, Security Level 3 attempts to prevent the intruder from gaining access to CSPs held within the cryptographic module. Physical security mechanisms required at Security Level 3 are intended to have a high probability of detecting and responding to attempts at physical access, use or modification of the cryptographic module. The physical security mechanisms may include the use of strong enclosures and tamper-detection/response circuitry that zeroes all plaintext CSPs when the removable covers/doors of the cryptographic module are opened.

主動式偵測以及銷毀算是 Level 3 比 Level 2 安全的地方。


Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

Telegram 使用 CDN 加速下載

Telegram 說明他們將會使用 CDN 加速:「More Speed and Security!」。

資料在 CDN 的節點上是加密的,金鑰需要透過 Telegram 的 key server 提供:

While these caching nodes are only used to temporarily store public media (imagine Telegram versions of superpopular YouTube hits), all data that goes through them is encrypted with a key unknown to the caching nodes. In other words, we treat these CDN caching nodes just like we treat your internet provider – they only ever get encrypted junk they can't decipher.

但這表示 Telegram 本身有能力解開這些資料?不知道這邊講的是什麼行為...

使用者如果選擇願意公開的話當然沒問題,但這種情況下也不需要 CDN 加密;而當使用者不願意公開時,應該是期望 Telegram 也無法解開這些資料?再來看看到底是怎麼樣的功能要上 CDN?