Tag Archives: deep

AWS 推出更便宜的儲存方案 Glacier Deep Archive

AWS 推出的這個方案價錢又更低了:「New Amazon S3 Storage Class – Glacier Deep Archive」。

在這之前在 us-east-1S3 最低的方案是 Glacier Storage,單價是 USD$0.004/GB (也就是 $4/TB)。

而這次推出的 Glacier Deep Archive Storage 在同一區則是直接到 USD$0.00099/GB ($0.99/TB),大約是 1/4 的價錢。

Glacier Deep Archive 在取得時 first byte 的保證時間是 12 小時,另外最低消費是 180 天:

Retrieval time within 12 hours

先前就有的 Glacier Storage 則是可以在取用時設定取得的 pattern (會影響 first byte 的時間),而最低消費是 90 天:

Configurable retrieval times, from minutes to hours

Pricing for each of these metrics is determined by the speed at which data is requested based on three options. "Expedited" queries <250 MB are typically returned in 1-5 minutes. "Standard" queries are typically returned in 3-5 hours. "Bulk" queries are typically returned in 5-12 hours.

多一個更便宜的選擇可以用。

用 NN 演算法重製 Full HD 版的 Star Trek: DS9

看到「Remastering Star Trek: Deep Space Nine With Machine Learning」這篇,裡面用了類神經網路演算法,將本來只有 480p (SD) 的 Star Trek: DS9 升到 1080p (Full HD) 的版本,而且看起來效果還不錯...

意外的看到有人拿 Star Trek 的材料來玩... 依照作者的說明,DS9 一直沒有 Full HD 版的其中一個原因反而是因為「數位化」了。使用類比膠卷的母帶可以透過更高規格的重新掃描而得到高畫質版本,但 DS9 的母帶似乎已經是數位版了,所以反而造成無法透過重新掃描的方式取得 Full HD 版本:

While you can rescan analog film at a higher resolution, video is digital and can't be rescanned. This makes it much costlier to remaster this TV show, which is one of the reasons why it hasn't happened.

現有的 upscale 技術主要都還是以圖片為主,所以作者本來以為對於動態畫面的處理會遇到問題,但蠻意外的超出預期,從影片可以看出來:

看起來之後的 remaster 版本有可能可以靠這個方法先做初步,然後再讓人進去修?

AWS 新推出的 Amazon Elastic Inference:GPU 出租方案

AWS 推出了 Amazon Elastic Inference,可以讓你選擇 GPU 的量掛進 EC2 instance:「Amazon Elastic Inference – GPU-Powered Deep Learning Inference Acceleration」。

第一眼看到的時候在想這不是之前出過了嗎... 後來搜尋發現應該是針對圖形運算與 machine learning 的應用拆開使用不同的硬體?

所以在前陣子 AWS 公告將 Amazon EC2 Elastic GPUs 改名為 Amazon Elastic Graphics:「Amazon EC2 Elastic GPUs is now Amazon Elastic Graphics」。

舊的 Amazon EC2 Elastic GPUs (Amazon Elastic Graphics) 應該是針對圖形應用設計,而新的 Amazon Elastic Inference 則是針對 machine learning 設計。

AWS 要再推出更低價的 S3 Glacier Deep Archive

AWS 打算要推出 S3 的新產品,單價更低但反應時間更長的儲存方案:「Coming Soon – S3 Glacier Deep Archive for Long-Term Data Retention」。

設計的客群是對法規有要求的情況:

It is designed for customers — particularly those in highly-regulated industries, such as the Financial Services, Healthcare, and Public Sectors — that retain data sets for 7-10 years or longer to meet regulatory compliance requirements.

看起來是那種 log 丟著就不會去動的情境... (Write once never read?XD)

透過類神經網路,直接把圖變成 HTML

看到 GitHub 上的「emilwallner/Screenshot-to-code-in-Keras」這個專案,直接把圖片轉成 HTML。介紹的文章則是「Turning Design Mockups Into Code With Deep Learning」。

有點像是「將 Sketch 輸出成 iOS/Android 的程式碼」與「透過 NN (類神經網路) 訓練好的系統,直接把圖片轉成程式碼」(後面這篇剛好在介紹文章裡也有提到)。

愈來愈有 NN 在逐步取代人類工作的感覺了...

Mozilla 實做百度發表的 Speech-To-Text 引擎 Deep Speech

Hacker News 上看到 MozillaGitHub 上的 mozilla/DeepSpeech 這個專案,用 TensorFlow 實做了百度的「Deep Speech: Scaling up end-to-end speech recognition」論文:

A TensorFlow implementation of Baidu's DeepSpeech architecture

語音轉文字的方案,Mozilla 開專案實做出來了...

這程式碼需要安裝 Git Large File Storage 才能完整下載包含訓練資料的部份:

Manually install Git Large File Storage, then clone the repository normally:
git clone https://github.com/mozilla/DeepSpeech

而目前已經有的資料來自於 Mozilla 另外一個專案「Common Voice」:

The Common Voice project is Mozilla's initiative to help teach machines how real people speak.

Common Voice 這個專案目前只有英文,網頁上就可以參與 validation 過程...

AWS 提供 Windows 上的 Deep Learning AMI

有一些 Windows 上的東西就可以直接開起來跑了:「Announcing New AWS Deep Learning AMI for Microsoft Windows」。

目前支援 2012 R2 與 2016:

Amazon Web Services now offers an AWS Deep Learning AMI for Microsoft Windows Server 2012 R2 and 2016.

然後 driver 與常用的東西都包進去了:

The AMIs also include popular deep learning frameworks such as Apache MXNet, Caffe and Tensorflow, as well as packages that enable easy integration with AWS, including launch configuration tools and many popular AWS libraries and tools. The AMIs come prepackaged with Nvidia CUDA 9, cuDNN 7, and Nvidia 385.54 drivers, and contain the Anaconda platform (supports Python versions 2.7 and 3.5).

把才能用在奇怪的地方:老闆偵測器

作者用 OpenCV 學習老闆的臉,然後當老闆走過來的時候把畫面切到努力工作中的 screenshot XDDD:「Deep Learning Enables You to Hide Screen when Your Boss is Approaching」。

“My boss left his seat and he was approaching to my seat.”

“OpenCV has detected the face and input the image into the learned model.”

“The screen has switched by recognizing him! ヽ(‘ ∇‘ )ノ ワーイ”

作者是個日本人 (要說不意外嗎 XDDD),這套軟體的程式碼在「Hironsan/BossSensor」這邊 XDDD

超級浪費才能 XDDD

Amazon Rekognition:圖片辨識 API

GoogleVision API,到 MicrosoftComputer Vision API (參考「微軟也推出圖片辨識的 API 了」),AWS 也推出類似的服務了:「Amazon Rekognition – Image Detection and Recognition Powered by Deep Learning」。

與其他兩家都是類似的方式,丟圖進去然後用系統已經 train 好的資料給你分析結果... 然後依照次數算錢。

有種算是補產品線的感覺啦...

Yahoo! 也放出了判斷是否為色情圖片的方案

感覺好像是從 AlphaGo 大勝李世乭開始,透過各類 neural network 的技術就一直冒出來...

Yahoo! 這次放出來判斷是否為色情圖片的也是同源的技術:「Open Sourcing a Deep Learning Solution for Detecting NSFW Images」。

當年沒辦法做的事情,現在的技術已經成熟到被 open source 出來了...