OxideDB:另外一套用 PostgreSQL 為底的 MongoDB 相容層

看到 OxideDB 這個專案:

OxideDB is a translation layer that works as a MongoDB database server while using PostgreSQL's JSON capabilities as the underlying data store.

跟之前提到的 MangoDB 有些淵源 (參考「MangoDB:拿 PostgreSQL 當作後端的 MongoDB 相容層」),順便提一下 MangoDB 後來被要求改名為 FerretDB:「MangoDB 改名為 FerretDB (雪貂)」。

主要的差異在於 OxideDB 只以 PostgreSQL 為底層,另外是用 Rust 寫的:

The project was heavily inspired by FerretDB and is on its early days. The main difference is that there is no intention to support any database other than PostgreSQL (FerretDB is also supporting Tigris) and it's written in Rust, as opposed to Go.

看起來大家都拿 PostgreSQL 在搞事,但這個專案裡面好像沒搜到 GIN 這個關鍵字,不知道是不是連 index 都沒下...

RDBMS 裡的各種 Lock 與 Isolation Level

來推薦其他人寫的文章 (雖然是在 Medium 上...):「複習資料庫的 Isolation Level 與圖解五個常見的 Race Conditions」、「對於 MySQL Repeatable Read Isolation 常見的三個誤解」,另外再推薦英文維基百科上的「Snapshot isolation」條目。

兩篇文章都是中文 (另外一個是英文維基百科條目),就不重複講了,這邊主要是拉條目的內容記錄起來,然後寫一些感想...

SQL-92 定義 Isolation 的時候,技術還沒有這麼成熟,所以當時在訂的時候其實是以當時的技術背景設計 Isolation,所以當技術發展起來後,發生了一些 SQL-92 的定義沒那麼好用的情況:

Unfortunately, the ANSI SQL-92 standard was written with a lock-based database in mind, and hence is rather vague when applied to MVCC systems. Berenson et al. wrote a paper in 1995 critiquing the SQL standard, and cited snapshot isolation as an example of an isolation level that did not exhibit the standard anomalies described in the ANSI SQL-92 standard, yet still had anomalous behaviour when compared with serializable transactions.

其中一個就是 Snapshot Isolation,近代的資料庫系統都用這個概念實做,但實際上又有不少差別...

另外「Jepsen: MariaDB Galera Cluster」這篇裡出現的這張也很有用,裡面描述了不同層級之間會發生的問題:

這算是當系統有一點規模時 (i.e. 不太可能使用 SERIALIZABLE 避免這類問題),開發者需要了解的資料庫限制...

Amazon Aurora (PostgreSQL) 也支援 Read Replica 了

Amazon Aurora (PostgreSQL) 支援 Read Replica 了:「Announcing Amazon Aurora PostgreSQL Read Replica for Amazon RDS for PostgreSQL」。

馬上想到的用途是量爆增時,如果當初有作 R/W split (讀寫分離) 就可以直接用錢撐住,不過官方給的範例是降低 RDS 轉移到 Aurora 的 downtime,這點就有點微妙...:

You can now create an Amazon Aurora PostgreSQL read replica for an Amazon RDS for PostgreSQL instance, allowing you to continuously replicate to Amazon Aurora PostgreSQL. This helps you minimize downtime when migrating a live workload from Amazon RDS for PostgreSQL to Amazon Aurora PostgreSQL, by keeping the instances in sync until you're ready to move your applications and users to Amazon Aurora PostgreSQL.

所以這次算是陸陸續續把功能補上來,在 Amazon Aurora (MySQL) 有的一般性功能,這邊就跟著先實作...

用 Machine Learning 調校資料庫

AWS AI Blog 在月初上放出來的消息:「Tuning Your DBMS Automatically with Machine Learning」。

Carnegie Mellon Database Group 做的研究,除了預設值以外,另外跟四種不同的參數做比較,分別是 OtterTune (也就是這次的研究)、Tuning script (對於不熟資料庫的人,常用的 open source 工具)、DBA 手動調整,以及 RDS

MySQL

PostgreSQL

比較明顯的結論是:

  • Default 值在所有的 case 下都是最差的 (無論是 MySQL 與 PostgreSQL 平台,以及包括 99% 的 Latency 與 QPS,這樣二乘二的四個結果)。而且 Default 跑出來的數字與其他的差距都很明顯。
  • OtterTune 在所有 case 下跑出來都比 Tuning script 的好。這也是合理的結果,本來就是想要取代其他機器跑出來的結果。

至於有些討論 DBA 會失業的事情,我是樂見其成啦... 這些繁瑣的事情可以自動化就想交給自動化吧 XD

PostgreSQL 9.5 將會有 Parallel Sequential Scan

在「Parallel Sequential Scan is Committed!」這邊看到 PostgreSQL 9.5 (還沒出) 將會有 Parallel Sequential Scan 的功能。

文章的作者直接拿了一個大家超常用的惡搞來示範,也就是經典的 LIKE '%word%'

rhaas=# \timing
Timing is on.
rhaas=# select * from pgbench_accounts where filler like '%a%';
 aid | bid | abalance | filler
-----+-----+----------+--------
(0 rows)

Time: 743.061 ms
rhaas=# set max_parallel_degree = 4;
SET
Time: 0.270 ms
rhaas=# select * from pgbench_accounts where filler like '%a%';
 aid | bid | abalance | filler
-----+-----+----------+--------
(0 rows)

Time: 213.412 ms

這功能真不錯 XD