用 Machine Learning 調校資料庫

AWS AI Blog 在月初上放出來的消息:「Tuning Your DBMS Automatically with Machine Learning」。

Carnegie Mellon Database Group 做的研究,除了預設值以外,另外跟四種不同的參數做比較,分別是 OtterTune (也就是這次的研究)、Tuning script (對於不熟資料庫的人,常用的 open source 工具)、DBA 手動調整,以及 RDS

MySQL

PostgreSQL

比較明顯的結論是:

  • Default 值在所有的 case 下都是最差的 (無論是 MySQL 與 PostgreSQL 平台,以及包括 99% 的 Latency 與 QPS,這樣二乘二的四個結果)。而且 Default 跑出來的數字與其他的差距都很明顯。
  • OtterTune 在所有 case 下跑出來都比 Tuning script 的好。這也是合理的結果,本來就是想要取代其他機器跑出來的結果。

至於有些討論 DBA 會失業的事情,我是樂見其成啦... 這些繁瑣的事情可以自動化就想交給自動化吧 XD

PostgreSQL 9.5 將會有 Parallel Sequential Scan

在「Parallel Sequential Scan is Committed!」這邊看到 PostgreSQL 9.5 (還沒出) 將會有 Parallel Sequential Scan 的功能。

文章的作者直接拿了一個大家超常用的惡搞來示範,也就是經典的 LIKE '%word%'

rhaas=# \timing
Timing is on.
rhaas=# select * from pgbench_accounts where filler like '%a%';
 aid | bid | abalance | filler
-----+-----+----------+--------
(0 rows)

Time: 743.061 ms
rhaas=# set max_parallel_degree = 4;
SET
Time: 0.270 ms
rhaas=# select * from pgbench_accounts where filler like '%a%';
 aid | bid | abalance | filler
-----+-----+----------+--------
(0 rows)

Time: 213.412 ms

這功能真不錯 XD