This patch adds AVX512 based 64-bit on AVX512-SKX and 16-bit sorting on AVX512-ICL. All the AVX512 sorting code has been reformatted as a separate header files and put in a separate folder. The AVX512 64-bit sorting is nearly 10x faster and AVX512 16-bit sorting is nearly 16x faster when compared to std::sort. Still working on running NumPy benchmarks to get exact benchmark numbers
16-bit int sped up by 17x and float64 by nearly 10x for random arrays. Benchmarked on a 11th Gen Tigerlake i7-1165G7.
有點「有趣」的情況是,AVX-512 在新的 Intel 消費級 CPU 被拔掉了,只有伺服器工作站的 CPU 有保留。而 AMD 的 Zen 4 則是跳下去支援 AVX-512...
M7g and R7g instances are available today in the US East (N. Virginia), US East (Ohio), US West (Oregon), and Europe (Ireland) AWS Regions in On-Demand, Spot, Reserved Instance, and Savings Plan form.
Today I am happy to tell you about the newest Amazon EC2 instance types, the M7g and the R7g. Both types are powered by the latest generation AWS Graviton3 processors, and are designed to deliver up to 25% better performance than the equivalent sixth-generation (M6g and R6g) instances, making them the best performers in EC2.
Both types of instances are equipped with DDR5 memory, which provides up to 50% higher memory bandwidth than the DDR4 memory used in previous generations.
接下來是看有沒有下放到 t 系列的計畫,像是 t5g 之類的,有的話再用看看好了,不過 blog 這台已經買了三年 RI,等到期間滿了之後說不定都有 Graviton4 或是 Graviton5 了...
EC2 Mac instances are dedicated Mac mini computers attached through Thunderbolt to the AWS Nitro System, which lets the Mac mini appear and behave like another EC2 instance.
Amazon EC2 Mac instances are available as Dedicated Hosts through both On Demand and Savings Plans pricing models. The Dedicated Host is the unit of billing for EC2 Mac instances. Billing is per second, with a 24-hour minimum allocation period for the Dedicated Host to comply with the Apple macOS Software License Agreement. At the end of the 24-hour minimum allocation period, the host can be released at any time with no further commitment.
真正大量支援 IFMA 的是 2019 後的 Intel CPU 了,但到了去年推出的 Alder Lake 因為 E-core 不支援 AVX-512 的關係 (但 P-core 支援),預設又關掉了。
所以如果問這個 bug 嚴不嚴重,當然是很嚴重,但影響範圍就有點微妙了。
接下來講第二個 CVE,是 AES OCB 的實做問題,比較有趣的地方是 Hacker News 上的討論引出了 Mosh 的作者跳出來說明,他居然提到他們在二月的時候試著換到 OpenSSL 的 AES OCB 時有測出這個 bug,被 test case 擋下來了:
Mosh uses AES-OCB (and has since 2011), and we found this bug when we tried to switch over to the OpenSSL implementation (away from our own ocb.cc taken from the original authors) and Launchpad ran it through our CI testsuite as part of the Mosh dev PPA build for i686 Ubuntu. (It wasn't caught by GitHub Actions because it only happens on 32-bit x86.) https://github.com/mobile-shell/mosh/issues/1174 for more.
So I would say (a) OCB is widely used, at least by the ~million Mosh users on various platforms, and (b) this episode somewhat reinforces my (perhaps overweight already) paranoia about depending on other people's code or the blast radius of even well-meaning pull requests. (We really wanted to switch over to the OpenSSL implementation rather than shipping our own, in part because ours was depending on some OpenSSL AES primitives that OpenSSL recently deprecated for external users.)
Maybe one lesson here is that many people believe in the benefits of unit tests for their own code, but we're not as thorough or experienced in writing acceptance tests for our dependencies.
Mosh got lucky this time that we had pretty good tests that exercised the library enough to find this bug, and we run them as part of the package build, but it's not that farfetched to imagine that we might have users on a platform that we don't build a package for (and therefore don't run our testsuite on).
Our next generation, Graviton3 processors, deliver up to 25 percent higher performance, up to 2x higher floating-point performance, and 50 percent faster memory access based on leading-edge DDR5 memory technology compared with Graviton2 processors.
A common software technique to implement nearly quadruple precision using pairs of double-precision values is sometimes called double-double arithmetic.
Using pairs of IEEE double-precision values with 53-bit significands, double-double arithmetic provides operations on numbers with significands of at least[4] 2 × 53 = 106 bits (...), only slightly less precise than the 113-bit significand of IEEE binary128 quadruple precision.