跑 ArchiveTeam Warrior

Archive Team 是一個致力於保存數位資料的組織,而 ArchiveTeam Warrior 則是他們提供的軟體,可以讓你很方便直接跑 worker 加入他們的 cluster,幫忙抓資料並且保存到 Internet Archive 上。

他們提供三種方法跑 ArchiveTeam Warrior,第一種是 VM 的方式,文件裡面有介紹怎麼用 VirtualBox 或是 VMware Player 跑起來。

第二種與第三種都是 container 類的方式,DockerPodman 都能跑起來。

跑起來後可以連進 http://127.0.0.1:8001/,然後選擇想要加入的項目,或是接受指令選擇目前團隊主打的項目。

在「Projects」這頁可以看到目前主力是備份 Enjin 上的資料。

丟了兩台 VPS 的機器上去用 Docker 跑,CPU 使用率看起來很低,但網路流量看起來會因為所在的地點而差蠻多的,一台大約是 300KB/sec 到 400KB/sec,換算後大約是 1TB/mo,另外一台則只有 1/10 的量。

Etsy 使用 Vitess 的過程

Etsy 寫了三偏關於使用 Vitess 解決資料庫效能問題的文章:「Scaling Etsy Payments with Vitess: Part 1 – The Data Model」、「Scaling Etsy Payments with Vitess: Part 2 – The “Seamless” Migration」、「Scaling Etsy Payments with Vitess: Part 3 – Reducing Cutover Risk」。

Vitess 是 YouTube 團隊開發出來的東西,試著透過一層 proxy 解決後端 MySQL 資料庫在 sharding 後查詢邏輯的問題。

有一些地方的資訊整理出來:

首先是現代暴力解的能耐,從維基百科可以查到 Etsy 在 2015 年就上市了,但到了 2020 年年底撞到 vertically scaling 的天花板 (這邊是指 GCP 的上限),可以看到現在的暴力法可以撐超久... 如果再多考慮到實體機房的話應該可以找到更大台的機器。

第二個是 Etsy 在 2020 年年底開始從資料庫搬資料,一路到 2022 年五月,算起來差不多搬了一年半,總共轉移了 4 個 database 到 Vitess 的 cluster 上,共 23 張表格與 40B rows。

第三個是利用 Vindexes 這個技術降低 sharding 時所帶來的限制。這個之前沒研究過:

A Vindex provides a way to map a column value to a keyspace ID.

從「Older Version Docs」這邊翻舊版的文件,發現 5.0+ 都有,再往 GitHub 上面的資料翻,看起來從 2016 年的版本就有了,不過當時看起來還一直在擴充:「Vitess v2.0.0-rc.1」。

回來看現在的功能,有 primary vindex 的設計:

The Primary Vindex for a table is analogous to a database primary key. Every sharded table must have one defined. A Primary Vindex must be unique: given an input value, it must produce a single keyspace ID.

然後是 secondary vindex(es) 的設計,指到 keyspace id(s),然後這個資訊會被用在 routing 上:

Secondary Vindexes are additional vindexes against other columns of a table offering optimizations for WHERE clauses that do not use the Primary Vindex. Secondary Vindexes return a single or a limited set of keyspace IDs which will allow VTGate to only target shards where the relevant data is present. In the absence of a Secondary Vindex, VTGate would have to send the query to all shards (called a scatter query).

It is important to note that Secondary Vindexes are only used for making routing decisions. The underlying database shards will most likely need traditional indexes on those same columns, to allow efficient retrieval from the table on the underlying MySQL instances.

然後是 functional vindex 與 lookup vindex,前者用演算法定義 keyspace id,後者讓你查:

A Functional Vindex is a vindex where the column value to keyspace ID mapping is pre-established, typically through an algorithmic function. In contrast, a Lookup Vindex is a vindex that provides the ability to create an association between a value and a keyspace ID, and recall it later when needed. Lookup Vindexes are sometimes also informally referred to as cross-shard indexes.

然後 lookup vindex 還有對 consistent hashing 的支援:

Consistent lookup vindexes use an alternate approach that makes use of careful locking and transaction sequences to guarantee consistency without using 2PC. This gives the best of both worlds, with the benefit of a consistent cross-shard vindex without paying the price of 2PC. To read more about what makes a consistent lookup vindex different from a standard lookup vindex read our consistent lookup vindexes design documentation.

這樣整體看起來,Vitess 把所有常見的 sharding 方式都包進去了,如果以後真的遇到這個量的話,也不需要自己在 application 或是 library 做一堆事情了...

GitHub 自己開發的搜尋引擎

前陣子 GitHub 發了一篇文章,說明自己開發搜尋引擎的心路歷程:「The technology behind GitHub’s new code search」。

看了一下其實就是自己幹了一套 search engine cluster,然後針對 code search 把一些功能放進去。

目前這套 search enginer 還是 beta 版本,全站兩億個 repository 只包括了 4500 萬 (大概 22% 左右),然後已經有 115TB 的程式碼了;另外也題到了先前導入 Elasticsearch 時的數字是 800 萬個 repository:

GitHub’s scale is truly a unique challenge. When we first deployed Elasticsearch, it took months to index all of the code on GitHub (about 8 million repositories at the time). Today, that number is north of 200 million, and that code isn’t static: it’s constantly changing and that’s quite challenging for search engines to handle. For the beta, you can currently search almost 45 million repositories, representing 115 TB of code and 15.5 billion documents.

目前是 32 台機器,沒有特別提到記憶體大小,也沒有提到 replication 之類的數字:

Code search runs on 64 core, 32 machine clusters.

然後各種 inverted index 與各種資料在壓縮後只有 25TB:

There are some big wins on the size of the index as well. Remember that we started with 115 TB of content that we want to search. Content deduplication and delta indexing brings that down to around 28 TB of unique content. And the index itself clocks in at just 25 TB, which includes not only all the indices (including the ngrams), but also a compressed copy of all unique content. This means our total index size including the content is roughly a quarter the size of the original data!

換算一下,就會發現現在已經是「暴力」可以解很多事情的年代了,而這已經是全世界最大的 code hosting。

以前隨便一個主題搞大一點就會撞到 Amdahl's law,現在輕鬆不少...

Apple 使用 Cassandra 的量

Hacker News Daily 上看到的:「Cassandra at Apple: 1000s of Clusters, 300k Nodes, 100 PB (twitter.com/erickramirezau)。原文在 Twitter 上:

有些數字有點對不太起來,裡面提到 300K nodes + millions of QPS,但通常讀寫都算 QPS,這樣聽起來很少?所以有種可能這邊是只有算 read 的部份...

另外照片裡面提到 Over two petabytes per cluster,但有 thousands of clusters,最後卻只有 Hundreds of petabytes of data,完全對不上,就算當作平均值來算也對不上,只能猜測是最大的 cluster 而不是 per cluster。

裡面矛盾的地方太多,所以這些數字基本上沒有參考價值,現在能讀出來的只知道 Apple 有在用 Cassandra,然後不是少少幾台 PoC 等級的使用。

ClickHouse 自家做的 benchmark 比較

在「Show HN: A benchmark for analytical databases (Snowflake, Druid, Redshift) (clickhouse.com)」這邊看到 ClickHouse 自家做的 benchmark 比較,網站在「ClickBench — a Benchmark For Analytical DBMS」這邊。

這種 benchmark 基本上是拿來當作清單來看,另外 Hacker News 上的討論一定得看,尤其是沒被列上 benchmark 的...

講到 ClickHouse,先前是有朋友跑來說他有個需求是需要跑分析,但遇到用 PostgreSQL 時發現寫入速度不夠快的問題,看看有沒有什麼方法可以解。問了多一點以後發現他的需求是 OLAP 類而不是 OLTP 類,就先跟他講要去找 OLAP engine 來解決。

然後就聊到維基百科上「Comparison of OLAP servers」這個條目,裡面列出來的 open source 軟體是不少,但 Apache 家基本上大家都知道是回收場,裡面就剩下 ClickHouse 比較常在 Hacker News 以及其他地方被提到,但我有跟他講我連玩都沒玩過,我們家自己反而是用 CassandraTrino 搭出來的,當時沒有花太多時間研究市場上的方案,就挑了一個自己熟悉的方案趕快先解決。

但過了兩天後他就說用 ClickHouse 解決了,反而讓我對 ClickHouse 有興趣起來,反正記憶體當時裝了一堆沒用到。

拉了一下「Summary of the 1.1 Billion Taxi Rides Benchmarks」這邊的資料看,這個作者常常會測各種資料庫,算是一個可以參考的資料來源,可以看到 2019 年測的「1.1 Billion Taxi Rides: 108-core ClickHouse Cluster」其實就相當不錯了?

基本上先照「Usage Recommendations」這邊看一輪,基本的要求不低,但剛好機器是 32GB RAM:

If your system has less than 16 GB of RAM, you may experience various memory exceptions because default settings do not match this amount of memory. The recommended amount of RAM is 32 GB or more. You can use ClickHouse in a system with a small amount of RAM, even with 2 GB of RAM, but it requires additional tuning and can ingest at a low rate.

如果要跑 cluster 模式的話會需要 ZooKeeper 或是替代品 ClickHouse Keeper

然後除了使用官方的 clickhouse-client 連線以外,也可以用 MySQL 或是 PostgreSQL 的 client 連,裡面操作其實蠻簡單的,好像值得投資看看?

Memcached 與 Redis 的比較

在「Memcached vs Redis - More Different Than You Would Expect」這邊看到對 MemcachedRedis 的分析。

這兩套軟體都很常被拿來用作 cache 機制,所以一般來說比較時就是比兩邊都有的東西 (如果你要 pub-sub 之類的東西,在這兩套裡面只有 Redis 有)。

最前面還是先講了對使用者 (開發者) 的差異,很明顯的是 Redis 對各種不同的資聊結構都有支援,這點可以從 Redis 被官方被稱作 Data Structures Server 就可以知道 (在「An introduction to Redis data types and abstractions」這篇可以看到),而 Memcached 只支援了 key-value 架構。

不過如果是以 cache 來說,的確 key-value 架構就還蠻好用的。

後面就開始比較硬的主題了,提到了 Memcached 與 Redis 內部是怎麼使用記憶體的。

Memcached 的部份先提了 page/slab/chunk 的架構以及產生的效能限制與浪費,接著有提到 2020 年 refactor 的部份 (太久沒有看 Memcached 的消息,去年沒跟到這個部份),讓多 CPU 的支援度更好。

Redis 則是靠 jemalloc 來處理這個部份,另外加上 background thread 的機制降低 fragment。

然後是比較 cache expiration 的部份,可以看到兩者用的演算法在現實世界中都夠用 (尤其是當作 cache 來用),這部份跟印象中的架構差不多,應該是沒有太大變化。

最後是比較 cluster 的部份,Memcached 是 share nothing,所以沒什麼好說的,主要是靠 client library 實做 consistent hash 之類的架構打散;而 Redis 的話看起來有實做新的機制出來 (也沒跟到),之後有機會再看看可以做到什麼程度。

不過好像沒提到 proxy 之類的架構,基本上各大公司都有自己幹:

少了這塊對於 cluster 架構的完整性差蠻多的。

文章最後沒有下定論一定要用哪個比較好,兩者都有強項與弱項,還是得看情況來處理。不過我自己還是很喜歡用 Memcached 就是了...

GitHub 的 MySQL 架構與數字

前幾天 GitHub 有寫一篇文章提到他們的 MySQL 是怎麼 scale 的,另外裡面也有一些數字可以看:「Partitioning GitHub’s relational databases to handle scale」。

他們最主要的 database cluster 叫做 mysql1,裡面有提到 2019 年的時候這個 cluster 是 950K qps,其中 primary 有 50K qps:

In 2019, mysql1 answered 950,000 queries/s on average, 900,000 queries/s on replicas, and 50,000 queries/s on the primary.

在 2021 年的時候變成 1.125M qps,其中 75K qps 在 primary 上:

Today, in 2021, the same database tables are spread across several clusters. In two years, they saw continued growth, accelerating year-over-year. All hosts of these clusters combined answer 1,200,000 queries/s on average (1,125,000 queries/s on replicas, 75,000 queries/s on the primaries). At the same time, the average load on each host halved.

另外這幾年比較成熟的方案都拿出來用了,包括用 ProxySQL 降低連線數的壓力 (connection pool 的概念):

[W]e started using ProxySQL to reduce the number of connections opened against our primary MySQL instances.

ProxySQL is used for multiplexing client connections to MySQL primaries.

另外用 Vitess 協助 sharding 之間的轉移:

Vitess is a scaling layer on top of MySQL that helps with sharding needs. We use its vertical sharding feature to move sets of tables together in production without downtime.

這兩套應該是已經蠻成熟的了... 另外也可以發現老方法還是很好用,就算在 GitHub 這種量還是可以暴力解決很多事情。

Percona XtraDB Cluster (PXC) 節點離開太久後的惡搞法

Percona 的「How To Recover Percona XtraDB Cluster 5.7 Node Without SST」這邊看到的技巧,不過只能用在 5.7 版,不能用在 8.0 版。我猜這個方法也可以用在其他跑 Galera Cluster 的資料庫上...

維護一組 Percona XtraDB Cluster 時一個常見的問題是,當節點離線太久後有機會無法用 IST (Incremental State Transfer) 跟回來,也就是只要把先前還沒有同步的部份更新進資料庫的方法,這時候就會需要用 SST (State Snapshot Transfer),變成抓整個 full copy。

作者提出來的方法是基於 IST 的大小通常比較小,但 binlog 通常都留蠻久的,所以可以利用 binlog 來幫 IST。

方法是先把 Galara Cluster 關掉,用 MySQL 傳統的 replication 同步到一定程度後,再把 IST 相關的位置設定指到已經同步的位置,接著再把 Galara Cluster 接上去就可以恢復了。

這個方法是 5.7 版限定,因為 8.0 的年代沒辦法改 Galara Cluster 的 wsrep 位置資訊:

Unfortunately, a similar solution does not work with Percona XtraDB Cluster 8.0.x, due to the modified way wsrep positions are kept in the storage engine, hence the trick with updating grastate.dat does not work as expected there.

我覺得可能 Percona 之後會弄出 patch 讓使用者可以改...

Kafka 拔掉 ZooKeeper 的計畫

目前 Kafka cluster 還是會需要透過 ZooKeeper 處理不少資料,但眾所皆知的,ZooKeeper 實在是不好維護,所以 Kafka 官方從好幾年前就一直在想辦法移除對 ZooKeeper 的相依性。

這篇算是其中一塊:「Kafka Needs No Keeper」。

真的自己架過 Kafka cluster 就會知道其中的 ZooKeeper 很不好維護,尤其是 Apache 官方版本的軟體與文件常常脫勾,設定起來就很痛苦。所以一般都會用 Confluent 出的包裝,裡面的 ZooKeeper 軟體與 Confluent 自己寫的文件至少都被測過,不太會遇到官方文件與軟體之間搭不上的問題。

另外一個常見的痛點是,因為 Kafka 推動拔掉 ZooKeeper 的計畫推很久了 (好幾年了),但進展不快,所以有時候會發現在 command line 下,有些指令會把 API endpoint 指到 ZooKeeper 伺服器上,但有些指令卻又指到 Kafka broker 上,這點一直在邏輯上困擾很久,直到看到官方的拔除計畫 (但又不快) 才理解為什麼這麼不一致...

給需要的人參考,當初在架設 Kafka cluster 時寫下來的筆記:「Confluent」。

在 Galera Cluster 上的 DDL 操作 (e.g. ALTER TABLE)

Percona 整理了一份關於 Galara Cluster 上 DDL 操作的一些技巧,這包括了 Percona XtraDB ClusterMariaDB 的版本:「How to Perform Compatible Schema Changes in Percona XtraDB Cluster (Advanced Alternative)?」。

在不知道這些技巧前,一般都是拿 Percona Toolkit 裡的 pt-online-schema-change 來降低影響 (可以降的非常低),所以這些技巧算是額外知識,另外在某些極端無法使用 pt-online-schema-change 的情境下也可以拿來用...

裡面的重點就是 wsrep_OSU_method 這個參數,預設的值 TOI 就是一般性的常識,所有的指令都會被傳到每一台資料庫上執行,而 RSU 則是會故意不讓 DDL 操作 (像是 ALTER TABLE) 被 replicate 到其他機器,需要由管理者自己到每台機器上執行。

利用這個設定,加上透過工具將流量導到不同後端的資料庫上,就有機會分批進行修改,而不需要透過 pt-online-schema-change 這種工具。