前幾個禮拜在 Hacker News Daily 上看到「CDC File Transfer (github.com/google)」這則,連結是指到 Google 的 GitHub 專案上,裡面實做了 FastCDC 演算法,另外說明他們為什麼要解這個問題以及對應的成果:「google/cdc-file-transfer」。
Google 的人看起來像是是在 CI/CD 階段遇到頻寬上的問題 (從「The builds are 40-45 GB large.」這邊猜),用 scp 與 rsync 看起來都不能解,所以他們自己刻了 FastCDC 演算法來解。
但我對 Content Defined Chunking (CDC) 不熟,所以先查一下 CDC 是什麼東西,就查到 restic 這篇講得很清楚:「Foundation - Introducing Content Defined Chunking (CDC)」。
要計算 delta 很直覺的作法就是要切 chunk,而接著的直覺就是固定大小的 chunk 切開,像是這樣每 16 bytes 切一個 chunk:
0123456789abcdef 0123456789abcdef 0123456789abcdef 0123456789abcdef
如果其中一個地方有變化,但其他沒變化的話就可以透過 cryptographic hash function (像是 SHA-256) 確認 chunk 內容一樣,進而省下很多傳輸的頻寬:
0123456789abcdef 0123456789ABCDEF 0123456789abcdef 0123456789abcdef
但可以馬上看出來這個方法的大缺點是只能處理 replacement,很難處理 insert & delete 的部份,舉例來說,如果變更是在開頭的地方加上 ABC,就會造成 chunk 會完全不一樣,而導致全部都要再傳一次:
ABC0123456789abc def0123456789abc def0123456789abc def0123456789abc def
這邊其實是個經典的演算法問題:想要找出兩個 string 的差異 (把舊的內容當作一個 string,新的內容也當作一個 string)。
這個問題算是 Edit distance 類型的題目,但你會發現解 Edit distance 的演算法會需要先傳輸完整個 string 才能開始跑演算法,這就本末倒置了。
而另外一個想法是,放棄固定的 chunk 大小,改用其他方式決定 chunk 的邊界要切在哪裡。而 CDC 就是利用一段 sliding window + hash 來找出切割的點。
文章裡面提到的 sliding window 是 64 bytes,這邊就可以算出對應的 HASH(b0, b1, ..., b63)
,然後往右滑動變成 HASH(b1, b2, ..., b64)
,再來是 HASH(b2, b3, ..., b65)
,一直往右滑動計算。
接下來 restic 會看 hash 值,如果最低的 21 bits 都是 0 就切開,所以 chunk 大小的期望值應該是 2MB?(這邊不確定,好像不能直接用 2^21 算,應該用積分之類的方法...)
For each fingerprint, restic then tests if the lowest 21 bits are zero. If this is the case, restic found a new chunk boundary.
而這個演算法可以適應新增與刪除的操作,不會造成從新增或刪除後的資料都要重傳,只有自己這個 chunk 需要重傳 (可能前或後的 chunk 也會要)。
然後挑一下 hash function 的特性,就可以讓計算的速度也很快。這邊提到了 hash function 可以用 Rolling hash,可以很快的從 HASH(b0, b1, ..., b63)
算出 HASH(b1, b2, ..., b64)
,而不需要全部重算。
有了 chunk 後,再用 cryptographic hash function 比較 chunk 的內容是否一樣,這樣就可以大幅降低傳輸所需要的頻寬了。