在 Ubuntu 下安裝 Tor Browser

因為 Tor Browser 會自己更新,所以不想裝 package 版本。網路上比較多人寫的是 torbrowser-launcher,但這幾天好像炸掉了,會一直說憑證有問題 (在 Issues 的頁面上可以看到一些回報),所以還是找了一下有沒有官方推薦的方法...

官方提供的是免安裝的執行檔案,結果在下載解開後,就看到了 start-tor-browser.desktop 這個檔案,如果打開來看,裡面就直接講到 --register-app 這個功能:

# After first invocation, it will update itself with the absolute path to the
# current TBB location, to support relocation of this .desktop file for GUI
# invocation. You can also add Tor Browser to your desktop's application menu
# by running './start-tor-browser.desktop --register-app'

他會自動把程式註冊到 ~/.local/share/applications/ 下,這樣用 Launcher 搜尋也找的到了,比想像中簡單不少...

EC2 的 Auto Scaling 增加了兩個功能

Amazon EC2Auto Scaling 增加了兩個功能,一個是 instance 可以有權重了:「Amazon EC2 Auto Scaling Now Supports Instance Weighting」,另外一個是可以設定 instance 活多久就要換一台:「Amazon EC2 Auto Scaling Now Supports Maximum Instance Lifetime」。

前面的 instance weighting 這個功能對於會混多種不同 family type 的情境會好用不少 (像是同時混用 {c3,c4,c5}.xlarge),可以讓設定上細緻一些,不然就只能以效能最低的那個類型規劃...

後面的 maximum instance lifetime 這個功能看起來可以拿來解各種 resource leak 的情境,而且現在 EC2 instance 是以秒計費,所以不用太擔心成本浪費太多的問題... 這樣不管是 memory leak 還是 /tmp 下暫存檔懶的清的問題,都可以很順利的逃避現實 XDDD

RDS 支援 Storage Auto Scaling

Amazon RDS 推出了 Storage Auto Scaling:「Amazon RDS now supports Storage Auto Scaling」。

看起來傳統 RDBMS 類的都支援 (也就是非 Aurora 的這些):

Starting today, Amazon RDS for MariaDB, Amazon RDS for MySQL, Amazon RDS for PostgreSQL, Amazon RDS for SQL Server and Amazon RDS for Oracle support RDS Storage Auto Scaling.

仔細看了一下新聞稿,裡面都只有提到 scale up,沒有提到 scale down,這個功能應該是只會提昇不會下降,所以要注意突然用很多空間,再砍掉後的問題:

RDS Storage Auto Scaling automatically scales storage capacity in response to growing database workloads, with zero downtime.

RDS Storage Auto Scaling continuously monitors actual storage consumption, and scales capacity up automatically when actual utilization approaches provisioned storage capacity.

除了香港外的所有商業區域都提供:

RDS Storage Auto Scaling is available in all commercial AWS regions except in Asia Pacific (Hong Kong) and AWS GovCloud.

SQLite 的 CLI 操作工具 litecli

之前應該都是用 SQLite 提供的 cli 操作,現在有人提供支援 auto completion 與顏色的 cli 軟體了:「CLI for SQLite Databases with auto-completion and syntax highlighting」。

工具是用 Python 寫的,可以直接用 pip 安裝。

把 YouTube 對 channel 與 user 的自動播放功能關掉...

YouTube 在 channel 與 user 頁面會自動播放會讓人覺得頗困擾 (頁面一打開就有聲音),所以想要找看看有沒設定可以關掉... 找了之後發現很久前就有被問過,但是當時得到沒有這個功能的回答:「How do I DISABLE autoplay from other channels on my YouTube channel?」。

既然如此就只能找套件來解了... 目前是透過 Userscript 擋下自動播放,程式碼不長也蠻好懂的:「Disable YouTube Channel/User Home Page Video AutoPlay」。

這樣總算是不會被聲音搞到...

Vault 出 1.0 版,整合雲上面的 HSM 服務

看到「HashiCorp Vault 1.0」這則消息,Vault 要出 1.0 不是什麼新聞,重點是他把跟 Cloud Auto Unseal 的功能放出來了:

In Vault 1.0, we are open sourcing Cloud Auto Unseal, allowing for all users of Vault to leverage cloud services such as AWS KMS, Azure Key Vault, and GCP CKMS to manage the unseal process for Vault.

可以看在 AWS 上的作法:「Auto-unseal using AWS KMS」。

這樣在雲上的服務可以再降低風險...

貴不少的 DynamoDB On-Demand...

DynamoDB 用起來比較困難的部份就是規劃 R/W capacity,所以 AWS 就推出了 DynamoDB On-Demand,直接計算用多少而不用規劃 R/W capacity:「Amazon DynamoDB On-Demand – No Capacity Planning and Pay-Per-Request Pricing」。

先講一下歷史,在 2014 的時候 Jeff Barr 就有在「Auto Scale DynamoDB With Dynamic DynamoDB」這邊提到開一台 t1.micro 在上面跑程式實做 DynamoDB 的 auto scaling。

另外在 2017 年的時候 AWS 自己推出了同樣的功能,就不需要開機器了,交給 AWS 的服務處理就可以了:「New – Auto Scaling for Amazon DynamoDB」。

所以就一般性的需求來說,其實目前的方案夠用:常態性的需求提昇,以及有預期性的活動時可以手動事前提昇。

目前想到唯一會炸掉的情境應該是突然被熱門媒體報導,而導致大量的 guest session 衝進來,而且架構上又沒有針對 guest session 用 cache 擋住 (Amazon DynamoDB Accelerator 也是個選項),導致壓力就全部到後端的 DynamoDB,而 auto scaling 機制需要時間看到量才會調整,在這段時間就有可能短時間倒站。

回來看這次的 On-Demand 提出來的價錢。以 us-east-1 的價錢來看:

Write request units$1.25 per million write request units
Read request units$0.25 per million read request units

而本來要自己規劃 R/W capacity 的價錢是 (這邊是 hourly):

Write capacity unit (WCU)$0.00065 per WCU
Read capacity unit (RCU)$0.00013 per RCU

由於不管是 On-Demand 還是本來的規劃,Read 價錢都是 Write 的 1/5,所以只要看 Write 一樣可以知道差距。

接下來把 On-Demand 的價錢換算成 3600 個 request units 就可以比較單價,是 $0.0045 (Write),大約是本來版本 6.92 倍的費用...

而且對於已經有規模的應用,這邊還沒算 Reserved Capacity 會有折扣的部份?

這個定價策略讓我想到 AWS Fargate 的情況... 如果你可以接受這個價錢,你可以平常就開五倍的 R/W capacity 在上面啊 XDDD

EC2 推出用 machine learning 協助 auto scaling 控制的功能...

AWSEC2 上推出了用 machine learning 協助 auto scaling 控制的功能:「New – Predictive Scaling for EC2, Powered by Machine Learning」。

最少給他一天的資料 (然後他會每天重新分析一次),接著會預測接下來的 48 小時的使用行為:

The model needs at least one day’s of historical data to start making predictions; it is re-evaluated every 24 hours to create a forecast for the next 48 hours.

所以是個學 pattern 然後預先開好機制等著的概念...

透過預測增加服務穩定性的概念... 如果本來就跑得好好的 (也就是靠 resource-based metric 觸發機器數量的方式跑得很好),就未必需要考慮這個方案了。

目前支援的區域中,東京不在列表內,不過其他常見的區域都支援了:

Predictive scaling is available now and you can starting using it today in the US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Ireland), and Asia Pacific (Singapore) Regions.

Aurora Serverless MySQL 進入 GA

AWS 宣佈能 auto-scale 的 Aurora Serverless MySQL 進入 GA:「Aurora Serverless MySQL Generally Available」:

不過目前開放的區域有限:

Aurora Serverless for Aurora MySQL is available now in US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Ireland).

以秒計費,但低消是 5 分鐘:

You pay a flat rate per second of ACU usage, with a minimum of 5 minutes of usage each time the database is activated.

us-east-1 的價錢來看,每個 ACU 是 USD$0.06/hour,而每個 ACU 大約是 standard instance 的價錢:

1 ACU has approximately 2 GB of memory with corresponding CPU and networking, similar to what is used in Aurora Standard instances.

但這沒看懂,是 db.t2.small 還是 db.t2.medium?另外比較是全速還是 small 的 20% 或 medium 的 40%?這部份也許還要再問看看才知道...

storage 與 I/O 的費用則是相同,倒是不用比較這塊... 再來不知道有沒有推出 Reserved ACU 的計畫,光是一年付清就差蠻多的。

要不要換過去其實還是要看看使用的量,以及可以接受的成本來決定...

EC2 的 Dedicated Instance 也支援 Auto Recovery 了...

所以除了一般的 EC2 instance 可以設定 Auto Recovery 外,實體機的 Dedicated Instance 也可以設定了:「Amazon EC2 Auto Recovery is now available for Dedicated Instances」。

不過能用架構做 High Availability 還是用架構做會比較好 (像是透過 ELB 擋在前面提供服務),Auto Recovery 因為是透過 CloudWatch 偵測 (目前最短的偵測時間應該是 10 秒一次),再加上要等新機器接手,還是會有明顯的 downtime。