假新聞產生器與偵測器

Hacker News 上看到的消息,是關於「使用類神經網路產生新聞」(也就是透過程式大量產生假新聞),這次的結果包括了「產生」與「偵測」兩個面向:「Grover – A State-of-the-Art Defense Against Neural Fake News (allenai.org)」。

實驗的網站在「Grover - A State-of-the-Art Defense against Neural Fake News」這邊,另外也有論文「Defending Against Neural Fake News」可以讀。

幾個月前,OpenAI 利用類神經網路,研發出「自動寫新聞」的程式,當時他們宣稱因為效果太好,決定不完整公開成果:「Better Language Models and Their Implications」,中文的報導可以參考 iThome 這篇:「AI文字產生技術引發假新聞爭議,OpenAI決定只公開部份技術成果」。

而現在 The Allen Institute for Artificial Intelligence 則是成功重製了 OpenAI 的成果,取名叫 Grover,發現訓練出來的模型除了可以拿來寫新聞外,也可以拿來偵測文章是不是機器產生的,而且就他們自己測試,辨識成功率還蠻高的:

To study and detect neural fake news, we built a model named Grover. Our study presents a surprising result: the best way to detect neural fake news is to use a model that is also a generator. The generator is most familiar with its own habits, quirks, and traits, as well as those from similar AI models, especially those trained on similar data, i.e. publicly available news. Our model, Grover, is a generator that can easily spot its own generated fake news articles, as well as those generated by other AIs. In a challenging setting with limited access to neural fake news articles, Grover obtains over 92% accuracy at telling apart human-written from machine-written news. Please read our publication for more information.

不過看起來 source code 與 model 還是沒放出來,但看起來遲早會有對應的 open source clone...

我想到在攻殼電視動畫裡面的情報管制戰,雖然電視動畫裡沒有講得很詳細,但感覺這類工具就是其中一環...

日本圍棋界使用 AWS 分析棋局的情況

看到「圍棋AI與AWS」這篇譯文,原文是「囲碁AIブームに乗って、若手棋士の間で「AWS」が大流行 その理由とは?」。

沒有太意外是使用 Leela Zero + Lizzle,畢竟這是 open source project,在軟體與資料的取得上相當方便,而且在好的硬體上已經可以超越人類頂尖棋手。

由於在 Lizzle 的介面上可以看到勝率,以及 Leela Zero 考慮的下一手 (通常會有多個選點),而且當游標移到這些選點上以後,還會有可能的變化圖可以看,所以對於棋手在熟悉操作介面後,可以很快的擺個變化圖,然後讓 Leela Zero 分析後續的發展,而棋手就可以快速判斷出「喔喔原來是這樣啊」。

網路上也有類似的自戰解說,可以看到棋手對 Lizzle 的操作與分析 (大約從 50:50 開始才是 Lizzle 的操作):

不過話說回來,幹壞事果然是進步最大的原動力... 讓一群對 AWS 沒什麼經驗的圍棋棋手用起 AWS,而且還透過 AMI 與 spot instance 省錢... XD

出租 GPU 的服務...

前陣子在「Rent out your GPU compute to AI researchers and make ~2x more than mining the most profitable cryptocurrency.」這邊看到的消息,服務網站是「Vectordash: GPU instances for deep learning」。

起因是搞計算的弄不到顯卡計算,而雲服務的 GPU 又太貴,所以再找方法解決... 結果注意到 cryptocurrency 計算的獲利與雲服務的 GPU 中間有不少差價,於是就弄出一個服務來媒合手上有顯卡與需要科學計算的人,一邊提供較高的獲利給本來在挖礦的人,另外一邊提供較低的價錢給需要科學計算的人。

目前支援的平台有限 (Nvidia 的顯卡,另外不支援 Windows,不知道是不是 Linux only),其他支援目前都還沒列 ETA,不過感覺是個解決大家痛點的服務 (而且挖礦這邊就是在拼獲利),應該有機會弄得很大...

繼續觀望... XD

Bitmain 推出 AI chip

BitmainBitcoin ASIC 市場上算是很有名的,就利用作 ASIC 的經驗推出自己的 AI chip 了:「Bitcoin’s Biggest Tech Player to Release AI Chips and Computers」。

這樣除了可以在雲端上租用 Google Cloud PlatformCloud TPU 以外,也可以自己買硬體來算了 (雖然軟體的支援應該還要再等):「Tensor Computing Processor BM1680」。

Facebook 也參戰參與 StarCraft 的 AI 測試,只是成績不太好...

Facebook 也參與了 StarCraft 的 AI 測試,不過成績不太好:「Facebook Quietly Enters StarCraft War for AI Bots, and Loses」。

不過跟 DeepMind 投入的項目不太一樣,Facebook 投入的是 StarCraft,DeepMind 投入的是 StarCraft II...

比賽有二十八組,Facebook 拿下第六名,但前三名都只是獨立愛好者:

Final results released Sunday indicate Facebook still has a way to go: CherryPi finished sixth in a field of 28; the top three bots were all made by lone, hobbyist coders.

不太像認真要玩...

星海爭霸 II 官方的 AI Workshop

Blizzard 公佈了在十一月的月初將會舉辦星海二的 AI Workshop:「Announcing the StarCraft II AI Workshop」。

On November 3 and 4, Blizzard and DeepMind will co-host the StarCraft II AI Workshop at the Hilton Anaheim hotel, next to the Anaheim Convention Center.

官方 (包括 DeepMind 團隊) 也會針對 SC2LE (Starcraft II Learning Environment) 與 SC2API (StarCraft II API) 提供交流:

Engineers and researchers from Blizzard and DeepMind will also be on-hand to meet with attendees and answers questions about the SC2LE and SC2API.

然後時間會跟 BlizzCon 2017 重疊 (目前看起來是卡到最後兩天),票是不能通用的:

While this event takes place during BlizzCon 2017, it is considered a separate event and is not part of the official BlizzCon program – therefore BlizzCon badges will not grant access to the AI workshop. However, we will be providing a limited pool of shareable BlizzCon badges that attendees of the AI workshop can use to check out BlizzCon and catch the StarCraft II Global Finals for inspiration on how to build superior AIs!

接下來應該會有不少消息出來... DeepMind 團隊的開發進度有可以跟頂尖選手競賽嗎?

DeepMind 跟 Blizzard 合作攻略 StarCraft II

DeepMind 宣佈與 Blizzard 合作,開發了 Star Craft II 的界面讓 AI 可以操作:「DeepMind and Blizzard to release StarCraft II as an AI research environment」:

Today at BlizzCon 2016 in Anaheim, California, we announced our collaboration with Blizzard Entertainment to open up StarCraft II to AI and Machine Learning researchers around the world.

這次比起圍棋更有意義的地方在於,圍棋是在完整資訊的情況下做出決策,但真實世界中經常是沒有完整的資訊就要做決策,這次的 StartCraft II 類似於這樣的環境,更接近於現實生活的情境:

StarCraft is an interesting testing environment for current AI research because it provides a useful bridge to the messiness of the real-world. The skills required for an agent to progress through the environment and play StarCraft well could ultimately transfer to real-world tasks.

另外考慮到電腦可以無限制精細操作每個單位,而人類有「操作速度」的問題,在規劃上會設限每分鐘可以操作的速度:

Computers are capable of extremely fast control, but that doesn’t necessarily demonstrate intelligence, so agents must interact with the game within limits of human dexterity in terms of “Actions Per Minute”.

來拉板凳繼續看下去...