OpenAI 推出 ChatGPT Plus

OpenAI 提出了 ChatGPT 的付費方案:「Introducing ChatGPT Plus」。


ChatGPT Plus is available to customers in the United States, and we will begin the process of inviting people from our waitlist over the coming weeks. We plan to expand access and support to additional countries and regions soon.

公告的價錢是 US$20/mo,基本上就是保證使用權。這跟之前有傳言 US$42/mo 叫 Professional 的方案低了不少:「ChatGPT users report $42 a month pricing for ‘pro’ access but no official announcement yet」:

The new subscription plan, ChatGPT Plus, will be available for $20/month, and subscribers will receive a number of benefits:

  • General access to ChatGPT, even during peak times
  • Faster response times
  • Priority access to new features and improvements

應該是會訂起來用,光是現在 free tier 就已經找到一些常用的模式,可以省下不少時間...

直接用 prompt 產生音樂的 Riffusion

很紅的 Stable Diffusion 是寫一串文字 (prompt) 然後產生圖片,而 Riffusion 則是寫一串文字產生音樂。

其中 prompt 轉成音樂其實還在可以預期的範圍 (i.e. 遲早會出現),但專案的頁面上解釋了 Riffusion 是基於 Stable Fusion 的作品,而且是利用 Stable Fusion 產生出時頻譜 (spectrogram):

Well, we fine-tuned the model to generate images of spectrograms, like this:


Hacker News 上討論時的討論頁可以看看,作者有參與一些討論:「Riffusion – Stable Diffusion fine-tuned to generate music (」。

其中有人提到這個作法超出想像,因為輸出的圖片只要幾個 pixel 差一點點就會產生出很不同的聲音:

This really is unreasonably effective. Spectrograms are a lot less forgiving of minor errors than a painting. Move a brush stroke up or down a few pixels, you probably won't notice. Move a spectral element up or down a bit and you have a completely different sound. I don't understand how this can possibly be precise enough to generate anything close to a cohesive output.

Absolutely blows my mind.


Author here: We were blown away too. This project started with a question in our minds about whether it was even possible for the stable diffusion model architecture to output something with the level of fidelity needed for the resulting audio to sound reasonable.

實際上聽了產生出來的音樂,是真的還 OK 的音樂... 大家都完全沒想到可以這樣搞,然後在 Hacker News 上的 upvote 數量爆炸高 XD


Hacker News Daily 上看到 Palette 這個服務,作者在 Hacker News 上有提到你可以提供一些句子調整顏色:「Show HN: I made a new AI colorizer (」。

Hi HN, I’m Emil, the maker behind Palette. I’ve been tinkering with AI and colorization for about five years. This is my latest colorization model. It’s a text-based AI colorizer, so you can edit the colorizations with natural language. To make it easier to use, I also automatically create captions and generate filters.

作者有把一些作品貼在 Reddit 上面,可以參考 這邊,看起來已經有一陣子了...

用 DALL·E 2 的圖當作網誌文章的圖片

Hacker News 上看到「I replaced all our blog thumbnails using DALL·E 2 (」這個點子,原文在「I replaced all our blog thumbnails using DALL·E 2 for $45: here’s what I learned」這邊。

網誌文章如果包含好的圖片時,曝光度與互動都會比較多。所以作者就想到用 OpenAIDALL·E 2 來搞事了:給個描述,請 DALL·E 2 生成圖片。

文章裡面有很多產生出來的圖都蠻有趣的,像是「a cute blue colored gopher with blue fur programming on multiple monitors displaying many spreadsheets, digital art」這個描述生出來的圖:

不過不算便宜,他花了 US$45 生成大約一百篇文章的圖:

I spent the weekend and $45 in OpenAi credits generating new thumbnails that better represent the content of all 100+ posts from our blog.

如果用先前「玩玩文字轉圖片的 min(DALL·E)」這邊提到的方法自己搞不知道可不可行?

確認 Deepfake Video Call 的方式

Hacker News 首頁上看到「To uncover a deepfake video call, ask the caller to turn sideways (」這篇,講怎麼在 video call 的時候辨認是不是 deepfake 的人。原文在「To Uncover a Deepfake Video Call, Ask the Caller to Turn Sideways」這邊可以讀到。


這張 GIF 會更明顯:

Hacker News 上的討論也有人提到這是目前的技術限制,所以這個方法算是有效的。但以現在各類 machine learning 成長的速度來看,可能沒多久後就會有新技術突破這個方法了。

KataGo 的分散式訓練計畫啟動了

KataGo 應該是目前 open source 領域裡面數一數二強的圍棋引擎,在去年就一直在開發可以讓大家參與的分散式訓練計畫,最近釋出了 v1.8.0 版,算是公開啟動了:「KataGo Distributed Training」,作者在「KataGo distributed training is open!」這邊也有大概寫一下。

基本上照著官方網站上面的說明做就可以了,可以下載 precompiled binary 或是自己編,自己編的時候注意不能直接拿 master branch 裡面編 (client hash 會不對),我自己目前是用 v1.8.0 這個版本編出來跑。

Reddit 上面的「KataGo's new run is open for public contributions!」也可以看到說明的圖片 (要注意圖上的 X 軸不是線性),算是接著本來的 g170 訓練下去,另外也標示了 ELFv2Leela Zero 大致上的強度:


另外在 CGOS 上面也可以看到 kata1 開頭的 bot 在跑,而且看起來會一直把新的 training 成果更新上去跑。

AI 版的星海爭霸二將直接透過歐洲區的 匿名與人類對戰

前幾天 Blizzard 公佈的消息,DeepMind 的星海爭霸二 AI (AlphaStar) 將會透過 Blizzard 的 歐洲區伺服器跟人類對戰:「DeepMind Research on Ladder」。

Experimental versions of DeepMind’s StarCraft II agent, AlphaStar, will soon play a small number of games on the competitive ladder in Europe as part of ongoing research into AI.


If you would like the chance to help DeepMind with its research by matching against AlphaStar, you can opt in by clicking the “opt-in” button on the in-game popup window. You can alter your opt-in selection at any time by using the “DeepMind opt-in” button on the 1v1 Versus menu.

但你仍然不會知道對手是人還是 AI,而且如同一般對戰情況,這會影響到你的戰績:

For scientific test purposes, DeepMind will be benchmarking AlphaStar’s performance by playing anonymously during a series of blind trial matches. This means the StarCraft community will not know which matches AlphaStar is playing, to help ensure that all games are played under the same conditions. AlphaStar plays with built-in restrictions that the DeepMind team has defined in consultation with pro players. A win or a loss against AlphaStar will affect your MMR as normal.


加州從今年七月開始,禁止 AI 偽裝成人類 (前幾天也有一些新聞在報導):「A California law now means chatbots have to disclose they’re not human」,對應的法條在「Bill Text - SB-1001 Bots: disclosure」這邊可以看到:

17941. (a) It shall be unlawful for any person to use a bot to communicate or interact with another person in California online, with the intent to mislead the other person about its artificial identity for the purpose of knowingly deceiving the person about the content of the communication in order to incentivize a purchase or sale of goods or services in a commercial transaction or to influence a vote in an election. A person using a bot shall not be liable under this section if the person discloses that it is a bot.

(b) The disclosure required by this section shall be clear, conspicuous, and reasonably designed to inform persons with whom the bot communicates or interacts that it is a bot.

而加州是 Blizzard Entertainment 的總部...

法條上面對「online platform」有設計排除條款,不過如果只算星海二的人數,有可能不到這個豁免限制... 所以得避開而改用歐洲區來測試?

(c) “Online platform” means any public-facing Internet Web site, Web application, or digital application, including a social network or publication, that has 10,000,000 or more unique monthly United States visitors or users for a majority of months during the preceding 12 months.

(c) This chapter does not impose a duty on service providers of online platforms, including, but not limited to, Web hosting and Internet service providers.

美國軍方應該是超級關注這個議題,相較於 AlphaGo 或是 AlphaZero 是資訊完全透明的遊戲,這次要踏入非對稱資訊的遊戲。

如果在這個領域上有成果的話,可以預期未來的戰爭 (yeah 實體戰爭) 會開始大量採用 AI 了...


Hacker News 上看到的消息,是關於「使用類神經網路產生新聞」(也就是透過程式大量產生假新聞),這次的結果包括了「產生」與「偵測」兩個面向:「Grover – A State-of-the-Art Defense Against Neural Fake News (」。

實驗的網站在「Grover - A State-of-the-Art Defense against Neural Fake News」這邊,另外也有論文「Defending Against Neural Fake News」可以讀。

幾個月前,OpenAI 利用類神經網路,研發出「自動寫新聞」的程式,當時他們宣稱因為效果太好,決定不完整公開成果:「Better Language Models and Their Implications」,中文的報導可以參考 iThome 這篇:「AI文字產生技術引發假新聞爭議,OpenAI決定只公開部份技術成果」。

而現在 The Allen Institute for Artificial Intelligence 則是成功重製了 OpenAI 的成果,取名叫 Grover,發現訓練出來的模型除了可以拿來寫新聞外,也可以拿來偵測文章是不是機器產生的,而且就他們自己測試,辨識成功率還蠻高的:

To study and detect neural fake news, we built a model named Grover. Our study presents a surprising result: the best way to detect neural fake news is to use a model that is also a generator. The generator is most familiar with its own habits, quirks, and traits, as well as those from similar AI models, especially those trained on similar data, i.e. publicly available news. Our model, Grover, is a generator that can easily spot its own generated fake news articles, as well as those generated by other AIs. In a challenging setting with limited access to neural fake news articles, Grover obtains over 92% accuracy at telling apart human-written from machine-written news. Please read our publication for more information.

不過看起來 source code 與 model 還是沒放出來,但看起來遲早會有對應的 open source clone...


日本圍棋界使用 AWS 分析棋局的情況

看到「圍棋AI與AWS」這篇譯文,原文是「囲碁AIブームに乗って、若手棋士の間で「AWS」が大流行 その理由とは?」。

沒有太意外是使用 Leela Zero + Lizzle,畢竟這是 open source project,在軟體與資料的取得上相當方便,而且在好的硬體上已經可以超越人類頂尖棋手。

由於在 Lizzle 的介面上可以看到勝率,以及 Leela Zero 考慮的下一手 (通常會有多個選點),而且當游標移到這些選點上以後,還會有可能的變化圖可以看,所以對於棋手在熟悉操作介面後,可以很快的擺個變化圖,然後讓 Leela Zero 分析後續的發展,而棋手就可以快速判斷出「喔喔原來是這樣啊」。

網路上也有類似的自戰解說,可以看到棋手對 Lizzle 的操作與分析 (大約從 50:50 開始才是 Lizzle 的操作):

不過話說回來,幹壞事果然是進步最大的原動力... 讓一群對 AWS 沒什麼經驗的圍棋棋手用起 AWS,而且還透過 AMI 與 spot instance 省錢... XD

出租 GPU 的服務...

前陣子在「Rent out your GPU compute to AI researchers and make ~2x more than mining the most profitable cryptocurrency.」這邊看到的消息,服務網站是「Vectordash: GPU instances for deep learning」。

起因是搞計算的弄不到顯卡計算,而雲服務的 GPU 又太貴,所以再找方法解決... 結果注意到 cryptocurrency 計算的獲利與雲服務的 GPU 中間有不少差價,於是就弄出一個服務來媒合手上有顯卡與需要科學計算的人,一邊提供較高的獲利給本來在挖礦的人,另外一邊提供較低的價錢給需要科學計算的人。

目前支援的平台有限 (Nvidia 的顯卡,另外不支援 Windows,不知道是不是 Linux only),其他支援目前都還沒列 ETA,不過感覺是個解決大家痛點的服務 (而且挖礦這邊就是在拼獲利),應該有機會弄得很大...

繼續觀望... XD