Home » Computer » Archive by category "Software" (Page 5)

Cloudflare 的 jpegtran 在 ARM 上面的表現

Cloudflare 花了不少力氣在 ARM 的伺服器上 (可以參考「Cloudflare 用 ARM 當伺服器的進展...」,或是更早的「Cloudflare 測試 ARM 新的伺服器」這篇),最近在 ARM 上發現 jpegtran 的效能不是太好,花了不少力氣最佳化,發現有意外收穫:「NEON is the new black: fast JPEG optimization on ARM server」。

他們設的低標是讓每個 core 的效能大約在 Xeon 的 50%,但發現只有 26% 左右的效能:

Ideally we want to have the ARM performing at or above 50% of the Xeon performance per core. This would make sure we have no performance regressions, and net performance gain, since the ARM CPUs have double the core count as our current 2 socket setup.

In this case, however, I was disappointed to discover an almost 4X slowdown.

而他就想到這些圖形運算的程式應該早就在使用各種 SIMD 指令集加速,於是作者就想到,把 SSE 的最佳化部份 porting 到 ARM 上面的 NEON 說不定會有很大的幫助:

Not one to despair, I figured out that applying the same optimizations I did for Intel would be trivial. Surely the NEON instructions map neatly to the SSE instructions I used before?

而 porting 完後重新測試發現達到了 66% 的效能,已經超過本來的目標... 另外在批次處理中,也比 Xeon 快了:

繼續發研究時又發現 NEON 有一些在 SSE 沒有的指令 (沒有相似功能),也許能提供更進一步的加速:

While going over the ARMv8 NEON instruction set, I found several unique instructions, that have no equivalent in SSE.

如果再把這些指令實做出來,會發現單 core 的效能已經到 Xeon 的 83%,而批次的速度又提昇了不少:

最後是整台伺服器都跑滿時的測試,會發現整台的效能差不多 (其實 ARM 的版本還贏一些),但吃電量不到一半,而就算只拿他們常態在跑的 4 workers 來看 (應該是為了 latency 問題),用電效率來到 6.5 倍:

With the new implementation Centriq outperforms the Xeon at batch reduction for every number of workers. We usually run Polish with four workers, for which Centriq is now 1.3 times faster while also 6.5 times more power efficient.

這篇在提醒之後在 ARM 上寫最佳化時,不要只從 SSE porting 到 NEON,要多看一下有沒有其他指令集是有幫助的...

Netflix 的 FrameScope,將效能資料轉成 2D 圖片

Netflix 丟出了 FlameScope,另外一種顯示效能的工具,將效能資料轉成 2D 圖片:「Netflix FlameScope」。

We’re excited to release FlameScope: a new performance visualization tool for analyzing variance, perturbations, single-threaded execution, application startup, and other time-based issues.

然後這個工具同樣是發明火焰圖的 Brendan Gregg 與他的同事 Martin Spier 的作品:

FlameScope was developed by Martin Spier and Brendan Gregg, Netflix cloud performance engineering team. Blog post by Brendan Gregg.

火焰圖 (flame graph) 就是這個:

這次推出的是這樣的圖:

其實是每秒切一次 offset 做出來的圖:

就可以很簡單的看出來哪些區塊以及 pattern 是熱點:

HTTPS Everywhere 改變更新 Ruleset 機制,變成定時更新...

HTTPS Everywhere 是我很喜歡的一個套件,裡面有 Ruleset,會將 Ruleset 表內認定有支援 HTTPS 網站的 HTTP request 都改成 HTTPS,這可以降低被攔截的風險。像是網站雖然有 HSTS 但第一次連線時走 HTTP 的情況,以及網站本身有支援 HTTPS 但沒有設定 HSTS 時,在網址列上誤打 HTTP 版本的情況。

先前版本的 Ruleset 是隨著軟體更新時,包在軟體內一起更新。這樣的缺點是更新速度比較慢,但好處是不需要伺服器端,而且隱私性也比較高。而現在 EFF 決定還是要推出線上更新的版本,以加速 Ruleset 更新的速度:「HTTPS Everywhere Introduces New Feature: Continual Ruleset Updates」。

We've modified the extension to periodically check in with EFF to see if a new list is available.

而頻寬的部份由 Fastly 贊助:

If you haven't already, please install and contribute to HTTPS Everywhere, and consider donating to EFF to support our work!

如果對這點有疑慮的,也還是可以關掉 auto updater 避免洩漏資訊給 EFF 或是 Fastly。

把 git log 用得很開心...?

看到「git log – the Good Parts」這篇文章,裡面研究了 Gitgit log 的各種好用的功能,然後整理出來... (所以是 good parts XD)

作者用的參數是一個一個加上去,所以可以一個階段一個階段了解用途。除了可以用作者推薦的 repository 測試外,我建議大家拿個自己比較熟悉的 open source 專案來測 (有用到比較複雜的架構):

git log
git log --oneline
git log --oneline --decorate
git log --oneline --decorate --all
git log --oneline --decorate --all --graph

看到喜歡的部份可以在 ~/.gitconfig 裡設 alias 使用,像是用 git l 之類的?保留 git log 本身可以避免一些 script 用到這個指令時因為輸出格式跟預期不一樣而爛掉 XD

gron:把 JSON 結構轉成條列式的資料,方便後續的文字處理...

在「gron makes JSON more greppable」這邊看到 gron 這個工具,可以將 JSON 轉成條列式的資料 (或是反過來,將條列式的資料轉回 JSON)。

像是網站上給的範例之一:

▶ gron testdata/two.json 
json = {};
json.contact = {};
json.contact.email = "mail@tomnomnom.com";
json.contact.twitter = "@TomNomNom";
json.github = "https://github.com/tomnomnom/";
json.likes = [];
json.likes[0] = "code";
json.likes[1] = "cheese";
json.likes[2] = "meat";
json.name = "Tom";

這讓 grep 或是 sed 之類的工具會更好操作,不然得用 jq 盧半天...

Qubes OS 4.0 推出

也是個放在 tab 上一陣子的連結,Qubes OS 推出了 4.0 版:「Qubes OS 4.0 has been released!」。這個作業系統的副標蠻有趣的,不是「絕對安全的作業系統」,而是用了 「reasonably」這樣的描述:

A reasonably secure operating system

主要是透過虛擬機隔離,但實做了常見會因為虛擬機而被擋下的功能,像是讓你可以直接剪下貼上。而界面上也是儘量做成無縫,像是這張 screenshot 就可以看到三個環境,但儘量給出視窗的感覺,而非 VM 的感覺:

有機會重灌的時候再說好了,系統轉移好累... Orz

在 Amazon Aurora 利用 ProxySQL 的讀寫分離提昇效能

Percona 的「Leveraging ProxySQL with AWS Aurora to Improve Performance, Or How ProxySQL Out-performs Native Aurora Cluster Endpoints」這篇有夠長的,其實就是發現 AWSAmazon Aurora 只使用 Cluster Endpoint 無法壓榨出所有效能,只有當你讀寫分離拆開 Cluster endpoint 與 Reader endpoint 時才能提昇效能。主要是在推銷 ProxySQL 啦,其他的軟體應該也能達到類似的效果...

然後這張怪怪的,應該是 copy & paste 上去的關係?

因為事後再疊 ProxySQL 進去不會太困難,一般還是建議先直接用服務本身提供的 endpoint (少了一層要維護的設備),等到有遇到效能問題時再來看是卡在哪邊,如果是 R/W split 可以解決的,才用 ProxySQL 或是其他軟體來解...

MySQL 5.7 的 VIRTUAL column 與 index

看到 Percona 的「Using ProxySQL and VIRTUAL Columns to Solve ORM Issues」這篇後去找 VIRTUAL 的資料,發現其實以前就寫過了,而且是兩年前寫的了:「MySQL 5.7 的 JSON、Virtual Column 以及 Index」。

2NF 的規範中會禁止資料的重複性以及可推導性。以這樣的資料結構開始:

CREATE TABLE t1 (
    id INT PRIMARY KEY AUTO_INCREMENT,
    birth DATE
);

與後者這樣延伸出來的資料結構:

CREATE TABLE t2 (
    id INT PRIMARY KEY AUTO_INCREMENT,
    birth DATE,
    year INT,
    month INT,
    day INT
);

其中 t2 裡的 yearmonthday 都可以被 birth 推導,這就卡到 2NF... 會有 t2 這樣的資料結構通常都是因為效能而需要的設計。

像是 SELECT * FROM t1 WHERE MONTH(birth) = 12; 這樣的 SQL query,即使在 birth 加上 index 也沒用,因為查詢條件不是某個連續的區間。另外建出 month 欄位,再對 month 建立 index 後,SELECT * FROM t2 WHERE month = 12; 才能利用這組 index 提昇效能。

但後者的設計會導致兩個問題,一個是空間的增加,另外一個是資料一致性管理的成本。

空間的增加還蠻好解釋的,來自於多了 yearmonthday 這些欄位要儲存。而資料一致性管理的成本是因為你沒有強制性的方式讓 yearmonthday 的值與 birth 的內容一致,也就是資料庫內有可能會有 birth2018-01-01,但 month 裡卻是 2 之類的數字。

一致性在 PostgreSQL 有 constraint 與 function 計算可以擋下,但對應到 MySQL 的 constraint 就沒辦法用 function 判斷條件,變成需要在 MySQL 外的地方 workaround 確保一致性...

而這次標題提到的 VIRTUAL column 算是 MySQL 5.7 推出來解這個問題的想法,我們可以這樣設計資料結構:

CREATE TABLE t3 (
    id INT PRIMARY KEY AUTO_INCREMENT,
    birth DATE,
    year INT AS (YEAR(birth)) VIRTUAL,
    month INT AS (MONTH(birth)) VIRTUAL,
    day INT AS (DAY(birth)) VIRTUAL
);

然後對 month 建立 index:

ALTER TABLE t3 ADD INDEX idx__month (month);

接著塞資料進去測試:

INSERT INTO t3 (birth) VALUES ('2018-01-02');
INSERT INTO t3 (birth) VALUES ('2018-01-03');

拉資料可以看到,雖然塞資料進去時沒有指定 yearmonthday,但拉資料時會計算出來:

mysql> SELECT * FROM t3;
+----+------------+------+-------+------+
| id | birth      | year | month | day  |
+----+------------+------+-------+------+
|  1 | 2018-01-02 | 2018 |     1 |    2 |
|  2 | 2018-01-03 | 2018 |     1 |    3 |
+----+------------+------+-------+------+
2 rows in set (0.00 sec)

也可以看到 VIRTUAL column 的唯讀特性:

mysql> INSERT INTO t3 (year) VALUES (2018);
ERROR 3105 (HY000): The value specified for generated column 'year' in table 't3' is not allowed.

當你資料量夠多時,可以用 EXPLAIN 看 MySQL 的 optimizer 會使用哪個 index (太少的時候會 table scan...):

mysql> EXPLAIN SELECT * FROM t3 WHERE month = 2 \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t3
   partitions: NULL
         type: ref
possible_keys: idx__month
          key: idx__month
      key_len: 5
          ref: const
         rows: 4
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.00 sec)

在這個例子裡用的欄位比較簡單,但如果在更複雜的案例裡面,應該會有更多地方可以發揮 (因為可以用 function 計算,這使得很多可能性跑出來),像是 Percona 的原文是以 application 沒辦法修改程式碼的前提下,可以在 ProxySQL 與 MySQL 端做出哪些改變讓效能變好。

應該是有不少情境可以用,再多想看看好了...

Amazon DynamoDB 的 Point-In-Time Recovery

Amazon DynamoDB 在 3/26 發出來的功能,以秒為單位的備份與還原機制:「New – Amazon DynamoDB Continuous Backups and Point-In-Time Recovery (PITR)」。

先打開這個功能:

打開後就會開始記錄,最多可以還原 35 天內的任何一個時間點的資料:

DynamoDB can back up your data with per-second granularity and restore to any single second from the time PITR was enabled up to the prior 35 days.

這時候就算改變資料或是刪除資料,實際上在系統內都是 Copy-on-write 操作,所以需要另外的空間,這部份會另外計價:

Pricing for continuous backups is detailed on the DynamoDB Pricing Pages. Pricing varies by region and is based on the current size of the table and indexes. For example, in US East (N. Virginia) you pay $0.20 per GB based on the size of the data and all local secondary indexes.

有這樣的功能通常是一開始設計時就有考慮 (讓底層的資料結構可以很方便的達成這樣的效果),現在只是把功能實作出來... 像 MySQL 之類的軟體就沒辦法弄成這樣 XDDD

最後有提到支援的地區,是用條列的而不是說所有有 Amazon DynamoDB 的區域都支援:

PITR is available in the US East (N. Virginia), US East (Ohio), US West (N. California), US West (Oregon), Asia Pacific (Tokyo), Asia Pacific (Seoul), Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia Pacific (Sydney), Canada (Central), EU (Frankfurt), EU (Ireland), EU (London), and South America (Sao Paulo) Regions starting today.

比對一下,應該是巴黎與美國政府用的區域沒進去... 一個是去年年底開幕的區域,另一個是本來上新功能就偏慢的區域。

Archives