WordPress 打算要支援 SQLite 作為後端資料庫

目前 WordPress 只有支援 MySQL,而昨天在 Hacker News 上看到 WordPress 有打算要支援 SQLite 作為後端資料庫的消息:「WordPress testing official SQLite Support (github.com/wordpress)」,原文在 GitHub 上:「Implement new experimental SQLite integration module」。

理論上對使用者會更方便,但對 extension 開發者會麻煩一些 (或是直接標不支援?),尤其是用到 MySQL 特有的語法就要注意了。

實質上 PHP + MySQL hosting 其實蠻常見的,這個作法有多少幫助就不知道了。

但突然想到,如果做一個 read-only 版本的 WordPress 站台,然後把 SQLite 的讀取部份改用 sql.js 之類的計畫,再把一堆 server side rendering 的部份變成 client side rendering,好像有機會可以整包直接上 GitHub Pages 之類的服務?雖然這樣有點拖褲子放屁...

PostgreSQL 上對應 pt-online-schema-change 的工具 pg-osc

翻資料的時候翻到「pg-osc: Zero downtime schema changes in PostgreSQL」這篇文章,可以在 PostgreSQL 上做到類似 pt-online-schema-change 的事情,這邊先提一下 pt-online-schema-change 的說明:

ALTER tables without locking them.

不管是 MySQL 還是 PostgreSQL,都會遇到 ALTER TABLE 常常會 lock 的問題,這點主要的影響就是 db migration。

在 dev 環境的機器應該沒什麼問題,資料量都不大,應該是很快就可以跑完;但在 stage 環境時就會開始有狀況了 (假設是從 production 複製過來的資料,表格的大小可能偏大),但應該還是可以用 downtime 換,慢慢跑,花幾個小時把 db migration 跑完。

可是到了 production 環境時就不太能這樣搞了,這也是一般不太建議在 production 環境裡用現成的 db migration 工具,尤其當資料量偏大的時候。

解這個問題的方法就是透過繞路的方式,不要直接動原來的 table:基本的想法是開一個新的 table,然後一直從舊的 table 搬資料到新的 table 上 (包括應用程式下指令寫到舊的 table 上的資料),直到最後用一個短暫的 lock 機制來切換 table。

在 MySQL 的世界裡比較有名的是 Percona 的 pt-online-schema-change (trigger-based) 以及 GitHubgh-ost (replication-based),另外找資料的時候有發現 Facebook 也有丟 OnlineSchemaChange (trigger-based) 出來。

在 PostgreSQL 的世界裡似乎是 pg_repack 這個方案,用了 trigger-based 的方式處理,但之前沒有注意到,是翻 pg-osc 的時候被提到才知道有這個工具。

而這次提到的 pg-osc 則是 2022 年才出的軟體,也是 trigger-based 的方式:

pg-osc uses the concept of shadow tables to perform schema changes. At a high level, it creates a shadow table that looks structurally the same as the primary table, performs the schema change on the shadow table (avoiding any locks since nothing is using this table), copies contents from the primary table to the shadow table and swaps the table names in the end while preserving all changes to the primary table using triggers (via audit table).

另外從 PostgreSQL 的 wiki 上看到「Change management tools and techniques」這頁,裡面看到「Metagration: Logical PostgreSQL Migration」這個工具,看起來好像是 replication-based 的方案,不過還是有用到一些 trigger 做事。

這些方案都先記錄起來好了...

比對兩個表格 (可以是不同的資料庫) 的內容,指出差異處

前幾天看到的東西,不確定是不是在 Hacker News 上,反正在 tab 上幾天了... 但還是附上 Hacker News 的連結:「Show HN: Data Diff – compare tables of any size across databases」,專案的位置在 GitHub 上的 datafold/data-diff

這是用 Python 寫的工具,安裝可以透過 pip 直接裝,所以也可以用 pipx 之類的工具獨立起來跑。

data-diff 會先拆成多個區塊,然後透過 checksum 的機制判斷兩邊的資料是否相同,不同的部份再取 bisection 分開下去找 (或是更多份,在 Technical Explanation 這個段落有寫到)。

在「Common use-cases」這段有提到幾個常見的使用情境,像是在自動化的環境下可以當作異常監控的工具:

Alerting and maintaining data integrity SLOs. You can create and monitor your SLO of e.g. 99.999% data integrity, and alert your team when data is missing.

另外在 troubleshooting 的情境下當然也很有幫助,可以先確認資料是否有問題,以及資料的哪邊出問題:

Debugging complex data pipelines. When data gets lost in pipelines that may span a half-dozen systems, without verifying each intermediate datastore it's extremely difficult to track down where a row got lost.

這個工具讓我想到 Percona Toolkit 裡面的 pt-table-checksum,不過 pt-table-checksum 只能處理 MySQL replication 的情境,data-diff 看起來通用多了:

目前完整測試過的是 MySQLPostgreSQLSnowflake,其他的有實做但還沒完整測試過。

看起來還在開發 (後面是商業公司 Datafold),但先寫下來,之後如果有用到的時候可以回頭看看進展...

翻一下 Linux container 的各種 overhead

想要查一下 Linux 下跑 container 的 overhead,發現大多都是 2014~2016 左右的文章,而且基本上都是 Docker,好像沒什麼新資料,但還是整理整理...

首先是「What is the runtime performance cost of a Docker container?」這篇,裡面的答案有提到 CPU、Memory 以及 I/O 看起來 overhead 都不高,主要是網路的 latency 增加不少:

看起來大約是 40µs 的增加 (0.04ms),這個量級雖然看起來很小,但對於本來就是透過 Ethernet 溝通的的應用來說,平常可能都是 <1ms 了,0.04ms 的增加可能還是有影響 (像是 TCP 的 3-way handshake)。

另外一篇是 Percona 的「Measuring Percona Server Docker CPU/network overhead」,不過這邊是測 CPU bound 的方式,沒有碰到 heavy I/O:

可以看到網路層的變化造成 tps 的變化,也符合在 Stack Overflow 上面找到的文章。

Oracle 官方的「MySQL with Docker - Performance characteristics」這篇則是測到 I/O bound 的應用,畢竟資料庫軟體會用到很多一般 I/O 測試不會用到的 flag,像是 InnoDB 大家通常都會啟用 O_DIRECT

For these tests, we used a custom configuration file. We first deliberately set the buffer pool size to around 10% of the total database size in order to increase I/O-bound load. The database size was 2358MB, so we set our buffer pool size to 256MB. We then increased the buffer size to 16384MB to see what happens when Docker isn’t bound by I/O load.

文章後面有列出數字,可以看到 I/O bound 的應用似乎沒有什麼影響,而 network bound 的時候可以看到效能的下降。

不過得注意這些資料都是六年前的資料了,沒有什麼新資料可以看做應該是沒什麼改變,但畢竟不是 100% 確定的事情...

這個月 GitHub 的不穩問題,都是 mysql1 這個 cluster 的鍋...

GitHub 針對了這個月的四次 downtime 說明,大致上都跟 mysql1 這組 cluster 有關:「An update on recent service disruptions」,這是 Keith Ballinger 發的文章,找了一下掛的頭銜是 SVP of Engineering at GitHub。

文章裡提到的 mysql1 在「Partitioning GitHub’s relational databases to handle scale」這邊可以看到一些資訊 (我在「GitHub 的 MySQL 架構與數字」這邊也有提到),基本上有 ProxySQL + Vitess 兩套方案在 scale,但可以看出來主資料庫本身還是有很大的 loading 在上面跑。

這次的問題是 mysql1 看起來這次遇到了效能上的瓶頸,不過還是沒找到原因,這可以從這幾次的說明看出來,從第一次的 outage:

The incident appeared to be related to peak load combined with poor query performance for specific sets of circumstances.

第二次的:

The following day, we saw the same peak traffic pattern and load on mysql1. We were not able to pinpoint and address the query performance issues before this peak, and we decided to proactively failover before the issue escalated.

第三次的:

While we had reduced load seen in the previous incidents, we were not fully confident in the mitigations.

In this third incident, we enabled memory profiling on our database proxy in order to look more closely at the performance characteristics during peak load.

到最近第四次的:

In order to reduce load, we throttled webhook traffic and will continue to use that as a mitigation to prevent future recurrence during peak load times as we continue to investigate further mitigations.

可以看到基本上還沒完,之後再遇到問題時應該還是會把 webhook traffic 拿出來開刀...

Linode 過了三年,終於想起來要推出 Managed Databases 服務了

看到 Linode 宣佈 Managed Databases 服務:「Linode Managed Databases in Open Beta」。

測試期間不用錢,但目前只有支援 MySQL,其他幾個像是 PostgreSQLRedisMongoDB 都還沒推出 (在 roadmap 上):

Our new managed database service is now in open beta for new and existing customers! We currently support MySQL during this beta—with a near-term roadmap to add PostgreSQL, Redis, MongoDB—and plan to include additional features.

搜了一下隔壁 DigitalOcean 的資料,Manage Databases 這條產品線在 2019 年二月推出 PostgreSQL 的版本:「Our Valentine’s Gift to You: Managed Databases for PostgreSQL」,在 2019 年八月推出了 MySQL 與 Redis 的版本:「Take the worry out of managing your MySQL & Redis databases」,然後在 2021 年六月推出了 MongoDB 的版本:「Introducing DigitalOcean Managed MongoDB – a fully managed, database as a service for modern apps」。

不過 Vultr 看起來是還是完全沒有樣子,相比起來 Linode 好像不算慢?

另外看起來 DigitalOcean 是跟 MongoDB 合作,不像 AWS 自己另外用 PostgreSQL 搞了一套 XDDD

Amazon RDS 支援 readonly instance 當作 Multi AZ 的機器了

從來沒在用 RDS 的 Multi AZ,所以根本沒注意到居然沒這個功能:「New Multi-AZ deployment option for Amazon RDS for PostgreSQL and for MySQL; increased read capacity, lower and more consistent write transaction latency, and shorter failover time (Preview)」。

看起來 (加上印象中) 之前的 Multi AZ 是另外一台機器先開著但不能用:

In the case of an infrastructure failure, Amazon RDS performs an automatic failover to the standby, so that database operations resume as soon as the failover is complete.

現在則是開著的機器可以跑 readonly 模式:

The standby DB instances act as automatic failover targets and can also serve read traffic to increase throughput without needing to attach additional read replica DB instances.

這樣做除了省成本外,另外因為這些 instance 平常就有 query 的量,當真的遇到 failover 切換時,warmup 的時間也會短很多 (尤其是服務夠大的時候)。

不過有些限制,首先看起來只支援 Graviton2 (ARM-based) 的機種?

The readable standby option for Amazon RDS Multi-AZ deployments works with AWS Graviton2 R6gd and M6gd DB instances (with NVMe-based SSD instance storage) and Provisioned IOPS Database Storage.

然後是支援的區域:

The Preview is available in the US East (N. Virginia), US West (Oregon), and Europe (Ireland) regions.

以及夠新的版本,MySQL 8 與 PostgreSQL 13.4 才有提供:

Amazon RDS for MySQL supports the Multi-AZ readable standby option for MySQL version 8.0.26. Amazon RDS for PostgreSQL supports the Multi-AZ readable standby option for PostgreSQL version 13.4.

但看起來還不錯,畢竟這比較接近以前在地端機房時的作法...

GitHub 的 MySQL 架構與數字

前幾天 GitHub 有寫一篇文章提到他們的 MySQL 是怎麼 scale 的,另外裡面也有一些數字可以看:「Partitioning GitHub’s relational databases to handle scale」。

他們最主要的 database cluster 叫做 mysql1,裡面有提到 2019 年的時候這個 cluster 是 950K qps,其中 primary 有 50K qps:

In 2019, mysql1 answered 950,000 queries/s on average, 900,000 queries/s on replicas, and 50,000 queries/s on the primary.

在 2021 年的時候變成 1.125M qps,其中 75K qps 在 primary 上:

Today, in 2021, the same database tables are spread across several clusters. In two years, they saw continued growth, accelerating year-over-year. All hosts of these clusters combined answer 1,200,000 queries/s on average (1,125,000 queries/s on replicas, 75,000 queries/s on the primaries). At the same time, the average load on each host halved.

另外這幾年比較成熟的方案都拿出來用了,包括用 ProxySQL 降低連線數的壓力 (connection pool 的概念):

[W]e started using ProxySQL to reduce the number of connections opened against our primary MySQL instances.

ProxySQL is used for multiplexing client connections to MySQL primaries.

另外用 Vitess 協助 sharding 之間的轉移:

Vitess is a scaling layer on top of MySQL that helps with sharding needs. We use its vertical sharding feature to move sets of tables together in production without downtime.

這兩套應該是已經蠻成熟的了... 另外也可以發現老方法還是很好用,就算在 GitHub 這種量還是可以暴力解決很多事情。

Amazon RDS 支援 ARM 架構的 t4g 與 x2g

這兩篇剛好一起看,Amazon RDS 支援了 ARM 架構的 t4gx2g:「Amazon RDS now supports X2g instances for MySQL, MariaDB, and PostgreSQL databases.」與「Amazon RDS now supports T4g instances for MySQL, MariaDB, and PostgreSQL databases.」。

目前主要是關注 t4g,因為目前量的關係反而是大量使用 t4g 類的機器,如果上面的 PostgreSQL 可以跑 t4g 的話,看起來只要沒有買 RI 的可以換過去,主要是比 t3 再省一些錢:以新加坡區的 PostgreSQL 來說,db.t4g.micro 目前是 $0.025/hr,而 db.t3.micro 則是 $0.028/hr,差不多是九折。

沒意外的話效能應該也會提昇一些,不過用 t 系列的機器本來就沒有太大的量在上面跑,這點應該是還好...

用 Ephemeral Storage 加速 MySQL over ZFS 的效能

Percona 的「MySQL/ZFS in the Cloud, Leveraging Ephemeral Storage」這篇裡面在探討是不是可以看看 ZFS 在 Ephemeral Storage (機器附的本地硬碟) 上的效能。

一開始測試是直接當主力硬碟來測,可以看到跑 ZFS 的情況下,本地的 storage 還是會比 SSD Premium (這是 Azure 的產品線) 還快不少:

但把資料放在本地的 storage 上其實有點刺激,至少在 production 應該不太會這樣搞,所以後面用 L2ARC 的方式來測,可以看到效率提昇相當明顯,甚至接近本來直接把資料放在本地的 storage:

另外測了 ext4/bcache,看起來效率就沒那麼好:

這樣看起來是個不錯的選擇...