這個月 GitHub 的不穩問題,都是 mysql1 這個 cluster 的鍋...

GitHub 針對了這個月的四次 downtime 說明,大致上都跟 mysql1 這組 cluster 有關:「An update on recent service disruptions」,這是 Keith Ballinger 發的文章,找了一下掛的頭銜是 SVP of Engineering at GitHub。

文章裡提到的 mysql1 在「Partitioning GitHub’s relational databases to handle scale」這邊可以看到一些資訊 (我在「GitHub 的 MySQL 架構與數字」這邊也有提到),基本上有 ProxySQL + Vitess 兩套方案在 scale,但可以看出來主資料庫本身還是有很大的 loading 在上面跑。

這次的問題是 mysql1 看起來這次遇到了效能上的瓶頸,不過還是沒找到原因,這可以從這幾次的說明看出來,從第一次的 outage:

The incident appeared to be related to peak load combined with poor query performance for specific sets of circumstances.

第二次的:

The following day, we saw the same peak traffic pattern and load on mysql1. We were not able to pinpoint and address the query performance issues before this peak, and we decided to proactively failover before the issue escalated.

第三次的:

While we had reduced load seen in the previous incidents, we were not fully confident in the mitigations.

In this third incident, we enabled memory profiling on our database proxy in order to look more closely at the performance characteristics during peak load.

到最近第四次的:

In order to reduce load, we throttled webhook traffic and will continue to use that as a mitigation to prevent future recurrence during peak load times as we continue to investigate further mitigations.

可以看到基本上還沒完,之後再遇到問題時應該還是會把 webhook traffic 拿出來開刀...

Linode 過了三年,終於想起來要推出 Managed Databases 服務了

看到 Linode 宣佈 Managed Databases 服務:「Linode Managed Databases in Open Beta」。

測試期間不用錢,但目前只有支援 MySQL,其他幾個像是 PostgreSQLRedisMongoDB 都還沒推出 (在 roadmap 上):

Our new managed database service is now in open beta for new and existing customers! We currently support MySQL during this beta—with a near-term roadmap to add PostgreSQL, Redis, MongoDB—and plan to include additional features.

搜了一下隔壁 DigitalOcean 的資料,Manage Databases 這條產品線在 2019 年二月推出 PostgreSQL 的版本:「Our Valentine’s Gift to You: Managed Databases for PostgreSQL」,在 2019 年八月推出了 MySQL 與 Redis 的版本:「Take the worry out of managing your MySQL & Redis databases」,然後在 2021 年六月推出了 MongoDB 的版本:「Introducing DigitalOcean Managed MongoDB – a fully managed, database as a service for modern apps」。

不過 Vultr 看起來是還是完全沒有樣子,相比起來 Linode 好像不算慢?

另外看起來 DigitalOcean 是跟 MongoDB 合作,不像 AWS 自己另外用 PostgreSQL 搞了一套 XDDD

Amazon RDS 支援 readonly instance 當作 Multi AZ 的機器了

從來沒在用 RDS 的 Multi AZ,所以根本沒注意到居然沒這個功能:「New Multi-AZ deployment option for Amazon RDS for PostgreSQL and for MySQL; increased read capacity, lower and more consistent write transaction latency, and shorter failover time (Preview)」。

看起來 (加上印象中) 之前的 Multi AZ 是另外一台機器先開著但不能用:

In the case of an infrastructure failure, Amazon RDS performs an automatic failover to the standby, so that database operations resume as soon as the failover is complete.

現在則是開著的機器可以跑 readonly 模式:

The standby DB instances act as automatic failover targets and can also serve read traffic to increase throughput without needing to attach additional read replica DB instances.

這樣做除了省成本外,另外因為這些 instance 平常就有 query 的量,當真的遇到 failover 切換時,warmup 的時間也會短很多 (尤其是服務夠大的時候)。

不過有些限制,首先看起來只支援 Graviton2 (ARM-based) 的機種?

The readable standby option for Amazon RDS Multi-AZ deployments works with AWS Graviton2 R6gd and M6gd DB instances (with NVMe-based SSD instance storage) and Provisioned IOPS Database Storage.

然後是支援的區域:

The Preview is available in the US East (N. Virginia), US West (Oregon), and Europe (Ireland) regions.

以及夠新的版本,MySQL 8 與 PostgreSQL 13.4 才有提供:

Amazon RDS for MySQL supports the Multi-AZ readable standby option for MySQL version 8.0.26. Amazon RDS for PostgreSQL supports the Multi-AZ readable standby option for PostgreSQL version 13.4.

但看起來還不錯,畢竟這比較接近以前在地端機房時的作法...

GitHub 的 MySQL 架構與數字

前幾天 GitHub 有寫一篇文章提到他們的 MySQL 是怎麼 scale 的,另外裡面也有一些數字可以看:「Partitioning GitHub’s relational databases to handle scale」。

他們最主要的 database cluster 叫做 mysql1,裡面有提到 2019 年的時候這個 cluster 是 950K qps,其中 primary 有 50K qps:

In 2019, mysql1 answered 950,000 queries/s on average, 900,000 queries/s on replicas, and 50,000 queries/s on the primary.

在 2021 年的時候變成 1.125M qps,其中 75K qps 在 primary 上:

Today, in 2021, the same database tables are spread across several clusters. In two years, they saw continued growth, accelerating year-over-year. All hosts of these clusters combined answer 1,200,000 queries/s on average (1,125,000 queries/s on replicas, 75,000 queries/s on the primaries). At the same time, the average load on each host halved.

另外這幾年比較成熟的方案都拿出來用了,包括用 ProxySQL 降低連線數的壓力 (connection pool 的概念):

[W]e started using ProxySQL to reduce the number of connections opened against our primary MySQL instances.

ProxySQL is used for multiplexing client connections to MySQL primaries.

另外用 Vitess 協助 sharding 之間的轉移:

Vitess is a scaling layer on top of MySQL that helps with sharding needs. We use its vertical sharding feature to move sets of tables together in production without downtime.

這兩套應該是已經蠻成熟的了... 另外也可以發現老方法還是很好用,就算在 GitHub 這種量還是可以暴力解決很多事情。

Amazon RDS 支援 ARM 架構的 t4g 與 x2g

這兩篇剛好一起看,Amazon RDS 支援了 ARM 架構的 t4gx2g:「Amazon RDS now supports X2g instances for MySQL, MariaDB, and PostgreSQL databases.」與「Amazon RDS now supports T4g instances for MySQL, MariaDB, and PostgreSQL databases.」。

目前主要是關注 t4g,因為目前量的關係反而是大量使用 t4g 類的機器,如果上面的 PostgreSQL 可以跑 t4g 的話,看起來只要沒有買 RI 的可以換過去,主要是比 t3 再省一些錢:以新加坡區的 PostgreSQL 來說,db.t4g.micro 目前是 $0.025/hr,而 db.t3.micro 則是 $0.028/hr,差不多是九折。

沒意外的話效能應該也會提昇一些,不過用 t 系列的機器本來就沒有太大的量在上面跑,這點應該是還好...

用 Ephemeral Storage 加速 MySQL over ZFS 的效能

Percona 的「MySQL/ZFS in the Cloud, Leveraging Ephemeral Storage」這篇裡面在探討是不是可以看看 ZFS 在 Ephemeral Storage (機器附的本地硬碟) 上的效能。

一開始測試是直接當主力硬碟來測,可以看到跑 ZFS 的情況下,本地的 storage 還是會比 SSD Premium (這是 Azure 的產品線) 還快不少:

但把資料放在本地的 storage 上其實有點刺激,至少在 production 應該不太會這樣搞,所以後面用 L2ARC 的方式來測,可以看到效率提昇相當明顯,甚至接近本來直接把資料放在本地的 storage:

另外測了 ext4/bcache,看起來效率就沒那麼好:

這樣看起來是個不錯的選擇...

MySQL InnoDB 的 OPTIMIZE TABLE 的 Lock

Backend Twhttps://www.facebook.com/groups/616369245163622/posts/2467225396744655/ 這邊看到:

先大概回答一下假設,DELETE 後的空間是可以被同一個表格重複使用的,所以應該是還好,不過離峰時間跑一下 OPTIMIZE TABLE 也沒什麼關係就是了。

裡面提到的「13.7.2.4 OPTIMIZE TABLE Statement」(MySQL 5.7 文件) 以及「13.7.2.4 OPTIMIZE TABLE Statement」(MySQL 5.6 文件) 都有講到目前比較新的版本都已經是 Online DDL 了:(這邊抓 5.6 的文件,有支援的版本資訊)

Prior to Mysql 5.6.17, OPTIMIZE TABLE does not use online DDL. Consequently, concurrent DML (INSERT, UPDATE, DELETE) is not permitted on a table while OPTIMIZE TABLE is running, and secondary indexes are not created as efficiently.

As of MySQL 5.6.17, OPTIMIZE TABLE uses online DDL for regular and partitioned InnoDB tables, which reduces downtime for concurrent DML operations. The table rebuild triggered by OPTIMIZE TABLE is completed in place. An exclusive table lock is only taken briefly during the prepare phase and the commit phase of the operation. During the prepare phase, metadata is updated and an intermediate table is created. During the commit phase, table metadata changes are committed.

文件上有提到會有一小段 lock 的時間,不過一般來說應該不會造成太大問題。

這邊要講的是早期的經典工具 pt-online-schema-change (pt-osc),這是使用 TRIGGER-based 的方式在跑,他的範例就直接提供了一個不需要 Online DDL 支援的版本:

Change sakila.actor to InnoDB, effectively performing OPTIMIZE TABLE in a non-blocking fashion because it is already an InnoDB table:

pt-online-schema-change --alter "ENGINE=InnoDB" D=sakila,t=actor

這在早期的時候還蠻常被拿出來用的,如果還在維護一些舊系統的話還蠻推薦的...

2019 年 Percona 對 UUID 當作 Primary Key 的看法

前陣子的「為資料庫提案新的 UUID 格式」這邊提到了有人提案要增加新的 UUID 格式,Percona 的老大 Peter ZaitsevTwitter 上貼了「UUIDs are Popular, but Bad for Performance — Let’s Discuss」這篇在 2019 年時他們家的文章,題到了 MySQL 使用 UUID 當作 Primary Key 的事情:

要注意的是這篇文章沒有要從頭解釋 UUID 對於 Primary Key 的壞處,如果你想要先了解的話,在這篇文章的開頭給了一堆其他文章的連結,裡面就有討論過了。

這篇主要是在討論,如果硬要用 UUID 當 Primary Key 時,可以有什麼方法降低對 InnoDB 的衝擊,剛好回應最近的提案。

開頭還是先花了一些篇幅大概講一下 UUID 的種類,然後在「What is so Wrong with UUID Values?」這邊提到了字串比較的差異,如果 UUID 是到最後一碼才不同的話 (這邊是跑 df878007-80da-11e9-93dd-00163e000002 與 df878007-80da-11e9-93dd-00163e000003 與比較一億次):

1 row in set (27.67 sec)

但如果是一開始就不同的話 (這邊是選擇 df878007-80da-11e9-93dd-00163e000002ef878007-80da-11e9-93dd-00163e000003) 會快很多:

1 row in set (2.45 sec)

但如果與數字相比的話 (這邊是 2=3 這樣的條件去比):

1 row in set (0.96 sec)

可以看數字在這邊的優勢,另外也是在說明,如果你用的是 time-based ordering 的 UUID,要考慮會遇到這個可能會發生的效能問題。

再來是玩 UUID 的三種不同的儲存方式對於寫入效能的差異,分別是 CHAR(36) (32 bytes 的 hex 加上四個 -)、base64 (用 CHAR(22) 存) 與 BINARY(16),可以看出來 BINARY(16) 因為佔用空間比較小的關係,是可以高速寫入持續最久的,再來是 base64,最差的是 CHAR(36)

後面給了兩個 workaround,第一個算是定義了另外一種產生 128 bits 的方式,第二個則是想辦法把 UUID 對應到數字。

這在 MySQL 的環境裡面算是被討論的很久的主題了。(我猜在 PostgreSQL 應該也是,不過 PostgreSQL 的社群沒跟那麼久...)

MySQL 在不同種類 EBS 上的效能

Percona 的人寫了一篇關於 MySQL 跑在 AWS 上不同種類 EBS 的效能差異:「Performance of Various EBS Storage Types in AWS」,不過這篇的描述部份不是很專業,重點是直接看測試資料建立自己的理解。

他的方法是在 AWS 上建立了相同參數的 gp2gp3io1io2 空間,都是 1TB 與 3000 IOPS,但他提到這應該會一樣:

So, all the volumes are 1TB with 3000 iops, so in theory, they are the same.

但這在「Amazon EBS volume types」文件上其實都有提過了,先不管 durability 的部份,光是與效能有關的規格就不一樣了。

在 gp2 的部份直接有提到只有保證 99% 的時間可以達到宣稱的效能:

AWS designs gp2 volumes to deliver their provisioned performance 99% of the time.

而 gp3 則是只用行銷宣稱「consistent baseline rate」,連 99% 都不保證:

These volumes deliver a consistent baseline rate of 3,000 IOPS and 125 MiB/s, included with the price of storage.

io* 的部份則是保證 99.9%:

Provisioned IOPS SSD volumes use a consistent IOPS rate, which you specify when you create the volume, and Amazon EBS delivers the provisioned performance 99.9 percent of the time.

另外在測試中 gp2gp3 的 throughput 看起來也沒調整成一樣的數字。在 1TB 的 gp2 中會給 250MB/sec 的速度,1TB 的 gp3 則是給 125MB/sec,除非你有加買 throughput。

另外從這句也可以看出來他對 AWS 不熟:

The tests were only run in a single availability zone (eu-west-1a).

在「AZ IDs for your AWS resources」這邊有提過不同帳號之間,同樣代碼的 AZ 不一定是一樣的區域,需要看 AZ ID:

For example, the Availability Zone us-east-1a for your AWS account might not have the same location as us-east-1a for another AWS account.

To identify the location of your resources relative to your accounts, you must use the AZ ID, which is a unique and consistent identifier for an Availability Zone. For example, use1-az1 is an AZ ID for the us-east-1 Region and it is the same location in every AWS account.

在考慮到只有設定大小與 IOPS 的情況下,剩下的測試結果其實跟預期的差不多:io2 貴但是可以得到最好的效能,io1 的品質會差一些,gp3 在大多數的情況下其實很夠用,但要注意預設的 throughput 沒有 gp2 高。

Facebook 把自家的 MySQL 升級到 8.0

Facebook Engineering 發了一篇將 MySQL 升級到 8.0 的說明:「Migrating Facebook to MySQL 8.0」。

先前的版本主要是 5.6,加上 MyRocks

Our last major version upgrade, to MySQL 5.6, took more than a year to roll out. When version 5.7 was released, we were still in the midst of developing our LSM-Tree storage engine, MyRocks, on version 5.6. Since upgrading to 5.7 while simultaneously building a new storage engine would have significantly slowed the progress on MyRocks, we opted to stay with 5.6 until MyRocks was complete. MySQL 8.0 was announced as we were finishing the rollout of MyRocks to our user database (UDB) service tier.

GitHub 上是有 facebook/mysql-8.0,但看起來從 2017 後就沒更新了,所以應該是沒有 open source 出來。

看看就好 XD