MongoDB 的欺騙性廣告

Jepsen 最近丟出了一篇新的測試報告在測新版的 MongoDB 4.2.6,而且語氣看起來比以前兇很多,翻了一下前因後果,看起來起因是出自 Twitter 上的這則推,提到了 MongoDB 拿 Jepsen 宣傳的頁面:

然後 Jepsen 的官方帳號這邊也回應,覺得不可置信:

過兩個禮拜後 Jepsen 就丟出由老大 Kyle Kingsbury 發表的「Jepsen: MongoDB 4.2.6」,這篇測試 MongoDB 4.2.6 最新版的測試報告了。

在這篇報告裡面提到了很多不道德的行為,首先是在之前的測試發現有很多會掉資料的問題,但在 MongoDB 官方的宣傳文件「MongoDB and Jepsen」裡面則是完全沒提到,而且還宣稱有業界最強的資料一致性與正確性 (與 Jepsen 報告所提供的資料不符),所以 Jepsen 建議把這些問題列到這個頁面上,以避免使用者受到「誤解」:

Curiously, MongoDB omitted any mention of these findings in their MongoDB and Jepsen page. Instead, that page discusses only passing results, makes no mention of read or write concern, buries the actual report in a footnote, and goes on to claim:

MongoDB offers among the strongest data consistency, correctness, and safety guarantees of any database available today.

We encourage MongoDB to report Jepsen findings in context: while MongoDB did appear to offer per-document linearizability and causal consistency with the strongest settings, it also failed to offer those properties in most configurations. We think users might want to be aware that their database could lose data by default, but MongoDB’s summary of our work omits any mention of this behavior.

另外當然就是重測 MongoDB 4.2.6 版,沒時間看內容的人可以先瞄一下標題,裡面就已經點出不少東西了:

3 Results
3.1 Sometimes, Programs That Use Transactions… Are Worse
3.2 How ACID is Snapshot Isolation, Anyway
3.3 Indeterminate Errors
3.4 Duplicate Effects
3.5 Read Skew
3.6 Cyclic Information Flow
3.7 Read Your (Future) Writes

不過在最後面的 Discussion 比較清楚。

首先是批評 snapshot isolation 不是 ACID:

MongoDB 4.2.6 claims to offer “full ACID transactions” via snapshot isolation. However, the use of these transactions is complicated by weak defaults, confusing APIs, and undocumented error codes. Snapshot isolation is questionably compatible with the marketing phrase “full ACID”. Even at the highest levels of read and write concern, MongoDB’s transaction mechanism exhibited various anomalies which violate snapshot isolation.

Snapshot isolation is a reasonably strong consistency model, but claiming that snapshot isolation is “full ACID” is questionable.

而且即使把所有的資料安全性相關的設定都調到最高,也根本就做不到宣稱的 snapshot isolation:

Finally, even with the strongest levels of read and write concern for both single-document and transactional operations, we observed cases of G-single (read skew), G1c (cyclic information flow), duplicated writes, and a sort of retrocausal internal consistency anomaly: within a single transaction, reads could observe that transaction’s own writes from the future. MongoDB appears to allow transactions to both observe and not observe prior transactions, and to observe one another’s writes. A single write could be applied multiple times, suggesting an error in MongoDB’s automatic retry mechanism. All of these behaviors are incompatible with MongoDB’s claims of snapshot isolation.

過程中也發現就算設定了 snapshot 層級,MongoDB 在讀取時也不會遵守 snapshot isolation:

MongoDB’s default read and write concern for single-document operations remains local, which can observe uncommitted data, and w: 1, which can lose committed writes. Even when users select safer settings in their clients at the database or collection level, transactions ignore these settings and default again to local and w: 1. The snapshot read concern does not actually guarantee snapshot isolation, and must always be used in conjunction with write concern majority. This holds even for transactions which perform no writes.

然後所有的官方文件都沒有教 snapshot isolation 要怎麼設定,你必須在第三方的文件上才有機會找到:

Nor can users rely on examples to demonstrate snapshot isolated behavior. MongoDB’s transaction documentation and tutorial blog posts show only write-only transactions, using read concern local rather than snapshot. Other examples from MongoDB don’t specify a read concern or run entirely with defaults. Learn MongoDB The Hard Way uses read concern snapshot but write concern local, despite performing writes. Tutorials from DZone, Several Nines, Percona, The Code Barbarian, and Spring.io all claim that transactions are either ACID or offer snapshot isolation, but none set either read or write concern. There are some examples of MongoDB transactions which are snapshot isolated—for instance, from BMC, +N Consulting, and Maciej Zgadzaj, but most uses of MongoDB transactions we found ran—either intentionally or inadvertently—with settings that would (in general) allow write loss and aborted reads.

基本上就是一個老大被惹怒了,丟出來炸,而且看他的語氣還有很多東西沒測,打算要再炸一篇?

Multithreading 版本 pt-online-schema-change

看起來是個嘗試,Percona 的人試著修改 pt-online-schema-change,讓他可以在 INSERT 時 multi-threading,然後看效果:「Multithreaded ALTER TABLE with pt-online-schema-change and myloader」。

可以看出來 thread 夠多的情況下其實都變快不少 (上圖主要是看絕對數字,下圖是看相對比率):

如果沒有意外的話應該會有更多的測試,而這些測試沒問題的話,之後的官方版本裡面應該就會有這個功能。

在網路流量很大時,Container 的網路對資料庫效能的影響

Percona 的「How Container Networking Affects Database Performance」這篇在討論 Kubernetes 上選擇不同的 CNI 對於資料庫效能的影響。

最重要的是結果的這張圖:

可以看到 TPS 與 throughput 都有影響到,要注意的是這是兩個不同的工具測出來的結果,在 TPS 上是用 sysbench,可以看到最好的 Kube-Router 上也掉了 13% 的 TPS:

Another key thing we found was that even in the best-case with Kube-Router we see an approximate 13% decrease in database performance comparing bare metal to running within Kubernetes. This illustrates that there are still improvements to be made to the performance of container networking in Kubernetes.

throughput 是用 iperf3,只要不是真的掉很多,就沒那麼關心了...

不過這個測試另外一個解讀是,如果你用資料庫不單純是 PK find() 類的處理,那麼效能應該是還好,因為會有不少 CPU 資源 (以及對應的時間) 是用在 join 或是其他處理上,對於 latency 與 throughput 應該就沒有那麼敏感了...

sysbench 的 RNG

Percona 的 blog 上看到了 sysbench 的 RNG (Random Number Generator) 跟想像中的不太一樣:「What You May Not Know About Random Number Generation in Sysbench」。

預設是 Special:

而不是直覺的 Uniform (也有提供):

另外還提供三種:

翻了翻可以翻到其他四個的理論基礎,但就是不知道 Special 的設計理論在哪裡...

AWS 上的 Redis 服務支援 Global Replication

AWS 上的 Redis 服務 (Amazon ElastiCache) 推出了 Global Datastore,也就是跨區同步的功能:「Now Available: Amazon ElastiCache Global Datastore for Redis」。

技術上會分成 read endpoint 與 write endpoint (在最後面的操作可以看到 $US_WEST_1_CLUSTER_READWRITE$US_WEST_2_CLUSTER_READONLY),所以算是蠻常見的 primary-secondary 架構。

不過我基本上不太愛 Redis,能用 Memcached 解決的偏好用 Memcached 解。不過如果把 Redis 當作是一種雲端服務的話,倒是還可以接受...

SQL Antipatterns: Avoiding the Pitfalls of Database Programming

標題裡是說這本書:「SQL Antipatterns: Avoiding the Pitfalls of Database Programming」,在 2010 年出版的書。

我是在 Hacker News Daily 上看到「Ask HN: What are some examples of good database schema designs?」這篇,裡面提到了這本書,看了一下章節看到只有 USD$25 就馬上先買起來丟到 Kindle 裡面...

這不是給資料庫初學者看的書,主要的讀者是對於「標準」夠熟 (學校教的那些理論基礎,像是各種 index 的底層結構,正規化的方法,以及正規化的原因),然後也有一些實務經驗後的開發者。

因為裡面把常遇到的問題,與可能的解決方式 (通常都違反當初在學校學的理論基礎) 整理成這本書,在底子還沒打穩前跑來看這本書並不是個好主意...

另外裡面雖然不一定有提到,但有蠻多技巧其實是用在「為了效能而不則手段」的情境下,所以這些內容對於想要調校比較大的網站應該也是很有幫助。

Runtime 期間的最佳化工具:Dynimize

忘記在哪邊看到「Reduce MySQL CPU Usage Through Dynamic Binary Optimization」這篇文章了,裡面其實是在描述自家產品 Dynimize 的威猛。

翻了一些資料可以發現這個產品出來一陣子了,在 2018 的時候曾經在 Percona Live 上發表過:「Accelerating MySQL with JIT Compilers」,可以看出來有點像是 PGO (Profile-guided optimization) 的行為,只是他可以直接對 binary 處理。

定價的部份會是這類產品的重點,如果價錢比加硬體貴的話就沒那麼好用了... 在 Dynimize Pricing 這邊可以看到是 per CPU 的價錢,$0.00139/hr、$1/month 或是一次性的 $24,以效能提昇的程度來看,如果在 database 這邊是 CPU bound,是個頗值得投資的項目。

從 Oracle 轉移到 PostgreSQL 的工具 Orafce

在「Migrating from Oracle to PostgreSQL: Tips and Tricks」這邊看到在討論怎麼從 Oracle 資料庫轉移到 PostgreSQL 上。

開頭介紹了 Orafce,實做了一些 Oracle 上的 function,可以使得轉移時不用改寫太多 SQL:

The "orafce" project implements of some functions from the Oracle database. The functionality was verified on Oracle 10g, and the module is useful for production work.

先記錄起來,之後如果有機會的話比較好找...

AWS 提供程式,可以掃出有哪些 RDS 的憑證需要更新

先前在「AWS 的 CA 更新 (CA-2019),將會影響與資料庫相關的服務」這邊提到了 AWSRDS 因為 Root Certificate 快要過期,需要更新到 CA-2019。

剛剛在 Twitter 上看到 Jeff Barr 提到了一個可以直接列出有哪些機器需要更新的工具:

程式放在 GitHub 上的 aws-samples/rds-ssl-update,另外看到一個有趣的授權條款,叫做 MIT-0 License,是 AWS 自己改的一個授權版本,拿掉了 MIT License 裡面的這段:

subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

也就是要求要引用授權條款的部份被拿掉,不過我還是比較喜歡 BSD license,尤其是 3-clause 的版本...

MySQL (InnoDB) 的內部狀態

Percona 老大 Peter Zaitsev 在「MySQL – A Series of Bad Design Decisions」這篇裡提到了他認為 MySQL 設計上的問題,不過裡面也提到了不少有用的指令,平常可以先熟悉一下輸出,等真的有狀況的時候才會想起來可以用這些指令。

首先是最經典的 SHOW ENGINE INNODB STATUS,算是很多文件上面都會提到的指令。可以看 InnoDB 當下的情況,藉以猜測內部現在是怎麼卡住...

另外一個是 SHOW ENGINE INNODB MUTEX,就如同 Peter Zaitsev 所提到的,這個指令想辦法抓出最重要的資訊,但不要像 SHOW ENGINE INNODB STATUS 給了那麼多。

另外當然就是 INFORMATION_SCHEMA,他甚至希望 SHOW ENGINE INNODB 系列的指令應該要被整合進去,這樣才能用 SELECT 相關的指令整理... (因為 ORDER BY 以及蠻多的指令沒辦法在 SHOW ... 上面用)