在 Simon Willison 這邊看到的「abacaj/mpt-30B-inference」,介紹了用 ggml 跑的 MPT-30B 專案:「abacaj/mpt-30B-inference」。
MPT-30 是個 open source model,比起同樣也是 open source model 的 Falcon-40B 小了一點,在官方的說明「MPT-30B: Raising the bar for open-source foundation models」可以看到其中一個特性是可以塞進單張 GPU:
The size of MPT-30B was also specifically chosen to make it easy to deploy on a single GPU—either 1x NVIDIA A100-80GB in 16-bit precision or 1x NVIDIA A100-40GB in 8-bit precision. Other comparable LLMs such as Falcon-40B have larger parameter counts and cannot be served on a single datacenter GPU (today); this necessitates 2+ GPUs, which increases the minimum inference system cost.
但即使如此,一般人也應該不會有 A100-40G 這種卡,所以很自然的就會想到可以用 ggml 在 CPU 上跑。
然後提到 ggml... 目前 llama.cpp 在 Falcon-40B 上還是卡關中,這樣看起來 MPT-30B 應該是目前 ggml 能跑的最大的 open source model?
Simon Willison 說他在 M2 MacBook Pro 上跑沒什麼問題,我在 32GB RAM 的 Linux 上也能跑,就照著 README.md
走就可以了,不過在 Python 裡面的預設是使用一半的 CPU core,我改成使用全部的 core,速度看起來有比較快。
然後回答的品質比起之前玩各家 7B 的版本好很多,丟了一些問題給他答,已經蠻有水準了...