從三角函數 cosine 的實做問題學一些週邊知識...

前幾天在 Hacker News 上看到「Implementing Cosine in C from Scratch (2020) (austinhenley.com)」這篇 2020 的文章,原文是「Implementing cosine in C from scratch」,裡面內在講自己刻三角函數的 cosine 所遇到的一些嘗試。

cosine 是很基本的函數,所以可以使用的地方很多。另外一方面,也因為他不是那麼直覺就可以實做出來,在現代的實做裡面其實藏了超多細節...

不過真的有趣的是在翻 Hacker News 上的討論時陸陸續續翻其他的資料看到的知識。

第一個看到的是 Intel 對於 FPU-based 指令集內的 FSIN 因為 π 的精度不夠而導致誤差超大 (尤其是在 0 點附近的時候):「Intel Underestimates Error Bounds by 1.3 quintillion」,然後 AMD 是「相容」到底,所以一樣慘:「Accuracy of FSIN and other x87 trigonometric instructions on AMD processors」。

這個就是有印象,但是太久沒有提到就會忘記...

第二個是 musl libc 裡的 cosine 實做 (看註解應該是從 FreeBSD 的 libc 移植過來的?):「__cos.c\math\src」與「cos.c\math\src」(話說 cgit 在 html 內 title 的內容對路徑的表達方式頗有趣,居然是反過來放...)。

拆開的部份是先將範圍限制在 [-\pi/4, \pi/4] 後 (這個部份看起來是透過 __rem_pio2.c 處理),再丟進公式實際運算。

另外帶出來第三個知識,查資料的時候翻到 binary64 (這也是 C 語言裡面的 double) 與 binary128 的差異:

而大家很常拿來惡搞的 double double 則是利用兩個 double 存放,形式是 v = head + tail,利用不同的 exponent 表示來不同部份的值,以提高經度:

A common software technique to implement nearly quadruple precision using pairs of double-precision values is sometimes called double-double arithmetic.

不過這樣的精確度只能到 106 bits,雖然跟 binary128 能達到的 113 bits 相比低了一些,但在大多數的情況下也還算夠用:

Using pairs of IEEE double-precision values with 53-bit significands, double-double arithmetic provides operations on numbers with significands of at least[4] 2 × 53 = 106 bits (...), only slightly less precise than the 113-bit significand of IEEE binary128 quadruple precision.

Leave a Reply

Your email address will not be published.