用在 IoT 裝置上的壓縮演算法 Heatshrink

在「Heatshrink – An ultra-lightweight compression library for embedded systems」這邊看到的演算法 Hearshrink,可以看到主打是在記憶體的用量受限的環境下壓縮。

在 2013 年的資料就有壓縮率的比較了:「heatshrink: An Embedded Data Compression Library」。

像是目前常被拿來使用的 ESP32 就只有 320KB 記憶體,gzip 就明顯太肥大了,HS 在這邊就可以犧牲壓縮率來換效能...

另外找了一下資料,發現有 lowzip 這個東西,走 ZIP 格式,記憶體用量也不高,不過軟體本身還掛 alpha:

Current x64 code footprint (for lowzip.c, excluding the test program) is about 3.2kB and RAM footprint is about 1.1kB.

如果之後打算要透過 LPWAN 之類的網路傳東西的話好像有可能會用到,先寫下來...

Leave a Reply

Your email address will not be published.