在「Deep Learning based Super Resolution with OpenCV」這邊看到 OpenCV 支援這些類神經網路的演算法了,而且有預先訓練好的模型資料可以下載來用。
傳統放大的方法包括 bicubic 與 nearest neighbor,速度很快但是效果就普普通通,而 NN 類的方法的效果遠超過傳統方式,不過速度慢不少。
文章裡面有提到可以指定不同的 NN 模型:
The first parameter is the name of the model. You can choose between: “edsr”, “fsrcnn”, “lapsrn”, “espcn”. It is very important that this model is the correct one for the model you specified in ‘sr.readModel()’. See the Model section on the bottom of the page for the specifications of each model.
拿這些模型名字搜了一下資料,在「Super-resolution benchmarking」這邊可以看到比較,主要是在講 EDSR 很棒,然後 ESPCN 很快?
不過看起來可以直接拿來用在不少地方了...