對於按讚數排名的方法

前幾天看到一篇 2009 年的老文章,在討論使用者透過「喜歡」以及「不喜歡」投票後,要怎麼排名的方法:「How Not To Sort By Average Rating」。

基本的概念是當使用者投票數愈多時就會愈準確,透過統計方法可以算一個信賴區間,再用區間的下限來排... 但沒想到公式「看起來」這麼複雜 XDDD

Score = Lower bound of Wilson score confidence interval for a Bernoulli parameter

但實際的運算其實沒那麼複雜,像是 Ruby 的程式碼可以看出大多都是系統內的運算就可以算出來。其中的 z 在大多數的情況下是常數。

require 'statistics2'

def ci_lower_bound(pos, n, confidence)
    if n == 0
        return 0
    end
    z = Statistics2.pnormaldist(1-(1-confidence)/2)
    phat = 1.0*pos/n
    (phat + z*z/(2*n) - z * Math.sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n)
end

The z-score in this function never changes, so if you don't have a statistics package handy or if performance is an issue you can always hard-code a value here for z. (Use 1.96 for a confidence level of 0.95.)

作者後來在 2012 年與 2016 年也分別給了 SQL 以及 Excel 的範例程式碼出來,裡面 hard-code 了 95% 信賴區間的部份:

SELECT widget_id, ((positive + 1.9208) / (positive + negative) - 
                   1.96 * SQRT((positive * negative) / (positive + negative) + 0.9604) / 
                          (positive + negative)) / (1 + 3.8416 / (positive + negative)) 
       AS ci_lower_bound FROM widgets WHERE positive + negative > 0 
       ORDER BY ci_lower_bound DESC;
=IFERROR((([@[Up Votes]] + 1.9208) / ([@[Up Votes]] + [@[Down Votes]]) - 1.96 * 
    SQRT(([@[Up Votes]] *  [@[Down Votes]]) / ([@[Up Votes]] +  [@[Down Votes]]) + 0.9604) / 
    ([@[Up Votes]] +  [@[Down Votes]])) / (1 + 3.8416 / ([@[Up Votes]] +  [@[Down Votes]])),0)

而更多的說明在維基百科的「Binomial proportion confidence interval」可以翻到,裡面也有其他的方法可以用。

This entry was posted in Computer, Murmuring, Programming and tagged , , , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *